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Abstract

The advancement of energy efficiency in the Internet of Things (IoT) and wireless sensor
networks (WSNs) is an important research effort, given their rapid application expansion
across smart cities and homes, healthcare, agriculture, and industrial automation. This
paper conducted a comprehensive survey of existing innovative solutions to challenges
focusing on hardwate-based, software-driven, and network optimization approaches,
alongside artificial intelligence-driven and demand-side energy management, and security-
enhanced frameworks. 82 peer-reviewed journal articles and conference papers published
between 2021 and 2025 were reviewed, using sources such as IEEE Xplore, ScienceDirect,
Web of Science, SpringerLink, and Google Scholar. It identifies significant developments
in energy-efficient techniques, including ultra-low-power hardware, adaptive scheduling,
bio-inspired clustering, and energy harvesting. Others include intelligent optimization
methods(e.g. machine, quantum-inspired heuristics), and blockchain-enhanced security. A
structured evaluation process is implemented, following PRISMA guidelines, categorizing
studies, and synthesizing findings to highlight technological progress, challenges, and
future research directions. The findings show a growing trend towards integrated, multi-
objective routing and cross-layer energy optimizations, with significant progress in
minimizing energy use, network lifetime and improving security mechanisms. However,
challenges like scalability, computational overhead and real-world deployment issues
persist. Our study offers valuable insights for sustainable energy management in IoT and
WSNs and helps guide future development toward more resilient, adaptable and
sustainable energy-aware systems.

Keywords: 10T, WSNs, Energy efficiency techniques, Al-based optimization, Edge
computing.

1. INTRODUCTION

The Internet of Things (IoT), a larger application platform built upon wireless
sensor networks (WSNs), has revolutionized industries and reshaped how we
interact with technology and the environment. IoT connects a massive network of
devices equipped with sensors, actuators, and communication modules that collect,
analyse, and share data over the Internet [1-5]. These interconnected systems allow
devices to operate independently, enabling smarter decision-making and driving
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transformative innovations across sectors such as smart homes, healthcare, smart
cities, industrial automation, agriculture, and transportation [1-0]. In recent years,
the development of miniaturized sensors and actuators, along with widespread
access to high-speed internet, has supported the rapid spread of smart devices
across domains [2,3]. This is evident in remote sensing and data capture, where fog
and cloud services play a vital role. Current projections estimate that by 2030, over
75 billion IoT devices will be in use, underscoring their critical role in shaping
modern infrastructure [1,5, 6]. IoT systems are more scalable than traditional
WSNs, using internet-enabled devices, along with fog and cloud platforms, as
gateways to the wider network.

While the increase in the number of 10T devices is beneficial in terms of efficiency
and innovations, it also poses energy efficiency (EE) challenges, as many IoT
devices rely on limited power sources, especially in remote or mobile settings [1-
15]. The battery-powered sensors tagged to these devices, such as smartphones,
smart electric appliances, smart office equipment, cars, and so on, often consume
large amounts of energy. Excessive energy consumption reduces device lifespan,
increases operational costs, and contributes to environmental degradation [1-15].
This challenge is further exacerbated by the remote locations of these nodes in
some cases, at which the maintenance is highly impractical, resulting in constraints
in sustaining the operation for long periods [1-15]. Tackling this issue requires
innovative solutions that optimize energy use, integrate renewable energy sources,
and balance performance with resource management.

Several optimization techniques and energy management systems are employed
across different layers of the network architecture to optimise energy use. This
includes lightweight encryption, energy-etficient routing protocol, duty cycle, edge
computing, data compression, power-aware scheduling, energy harvesting (EH),
battery management systems, and network traffic optimization[1-15], etc., have
been introduced to help manage power consumption in IoT devices and networks
to prolong the device's lifespan. While these solutions exist in the IoT ecosystems,
energy use remains a critical challenge. Research has shown that energy
consumption is the major barrier to scaling IoT systems as it constrains the
processing of IoT network functionalities. Studies have shown that
communication and sensing activities consume a significant portion of power[1-
8]. Thus, optimizing EE is essential to ensuring the reliability, scalability, and
ecological sustainability of IoT ecosystems.

Given the above background, this paper conducts a review to systematically
evaluate current strategies, technologies, and challenges in energy management for
IoT systems. It is intended to explore and integrate recent developments in energy-
efficient design and operation, focusing on hardware innovations, software
algorithms, network protocols, artificial intelligence (Al)-driven optimizations and
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demand-side management while highlighting important trends, techniques, and
future directions. This study offers valuable insights into developing a new energy-
aware framework that helps 10T devices extend their lifespan by using resources
more efficiently, meeting the growing need for resource-efficient technologies. The
main contributions of this paper are:

1) Provided a structured review of recent advances in energy-efficient
techniques for IoT and WSNs, following the Systematic Reviews and
Meta-Analyses (PRISMA) guidelines and drawing from a range of peet-
reviewed sources.

2) Identified and categorized energy management strategies, covering
hardware-level designs, software-based methods, network and Al-driven
optimizations, etc., with attention to trends like federated learning (FL),
bio-inspired, quantum-based, multi-objective, blockchain-supported
security and reliability, and so on.

3) Odutlines several important research directions, focusing on scalable,
deployment-aware solutions that combine machine learning (ML), edge
computing (EC) and decentralized architectures to support sustainable,
efficient IoT systems

The remaining parts of the paper are organized as follows: Section 2 presents the
background information and related works, and Section 3 presents the
methodology. Section 4 presents the analysis of existing IoT energy-efficient
strategies, Section 5 presents the findings discussions and possible research
direction while Section 6 concludes the paper.

2.  LITERATURE REVIEW
2.1. IoT Energy Efficiency

The architecture of IoT systems is organized into multiple layers with each
performing specific functions that are critical to the system’s operation. The
sensing layer is responsible for collecting environmental or operational data via
sensors and actuators. The network layer allows communication through protocols
like ZigBee, LoRaWAN, or cellular networks, while the application layer processes
data for analytics, visualization, or decision-making [1][9]. Given the distinct layers,
the energy utilization across them differs significantly. Particularly, the network
layer often accounting up to 70% of the total energy used by IoT devices, which
makes it the most power-intensive component [3, 5, 8]. To deal with EE
challenges, several strategies have been designed, developed, and deployed such as
hardware-based, software-based, and network-based such as optimizing
communication protocols and minimizing redundant data transmission. In
addition, EC at the application layer has been introduced to reduce energy use by
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processing data next to the source. As shown in Figure 1, collectively, the goal is
to ensure devices’ efficiency and increase the network lifespan.

Classification of Energy Efficiency Techniques in IoT >
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Figure 2. IoT energy efficiency techniques

Furthermore, EE in the IoT ecosystem relies on hardware and software techniques
to minimize power consumption while maintaining system reliability. Hardware-
based methods include ultra-low-power microcontrollers, event-driven sensors,
and optimized circuits that dynamically adjust voltage and clock speed to reduce
energy use [3, 9]. These are complemented by EH mechanisms, such as solar or
piezoelectric elements, enabling extended operation without frequent battery
replacements [9-11]. Outdoor solar panels and RF or thermal harvesting increase
autonomy in urban and industrial settings, achieving up to 80% energy self-
sufficiency. Equally, software techniques work alongside hardware optimizations,
dynamically adjusting system behaviours based on workload. Dynamic voltage and
frequency scaling (DVFS) reduce processing demands, cutting energy use by over
90% 1in low-traffic conditions. Task scheduling and middleware enhance resource
distribution by regulating sensor activity to minimize unnecessary operations [3, 9,
14]. Additionally, data compression lowers communication energy costs by 30—
50%, depending on data type, further improving overall efficiency.

Beyond individual devices, EE is shaped by communication and network-level
strategies. Wireless communication is energy-intensive, leading to the use of duty
cycling, adaptive transmission control, and data aggregation to reduce transmission
frequency and duration. Low-power hardware designs and duty cycling alternate
between active and sleep modes to conserve energy [1, 3, 5, 8, 9]. At the network
level, energy-aware routing, topology management, and load distribution extend
the system lifespan by balancing energy demand [1, 4, 14]. In addition, EC supports
local processing, minimizing cloud storage reliance and cutting transmission-
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related energy use by up to 60% in dense networks [9]. ML and Al, such as deep
learning (DL), FL, and reinforcement learning (RL), enable real-time adaptation to
usage patterns and environmental conditions. These learning-based models
optimize scheduling and resource allocation across networks [2, 9]. EH and
renewable energy integration (REI) [9-11, 13] further align device operations with
available energy sources or grid conditions [7, 14]. EH, combined with EC allows
devices to process data locally using renewable power to reduce transmission
dependence [13]. Likewise, demand-side energy management (DSEM)
complements this by optimizing electricity consumption and lowering costs.
Studies show that integrating solar harvesting, adaptive sampling, and similar
approaches can cut energy use by up to 60-80%, improving the efficiency and
sustainability of IoT systems. These energy-aware techniques improve network
lifetime and reliability while mitigating environmental impact. However, achieving
optimal balance requires managing trade-offs [1]. For example, improving data
accuracy may require more frequent transmissions, which in turn increases energy
use. Likewise, improving security or fault tolerance can introduce overheads that
impact latency or EE. Consequently, researchers are now focusing on multi-
objective optimisation to balance the competing demands.

I Microprocessor I

& | n+1 bits

(b ©
Figure 2. (a) DVES architecture, (b) Zigbee module, (c) Solar panel

2.2. Related Works

This section presents selected reviews and surveys on EE optimization in the
context of IoT and WSNs. These works cover data aggregation, fault tolerance,
routing protocols, low-power design, EH, and communication strategies. Several
studies have reviewed efficient data aggregation and routing. Begum and Nandury
[1], Bharany et al. [2], and Khan et al. [4] reviewed methods to reduce energy use
while maintaining reliable communication. Begum and Nandury [1] provided a
general overview of data aggregation strategies, while Khan et al. [4] focused on
fault-tolerant mechanisms in green cloud computing. Bharany et al. [2]
concentrated on energy-efficient routing in underwater sensor networks (UWSNSs),
incorporating ML techniques to extend network lifetime and reduce energy usage.
Low-power design has also been a prominent topic. Kumar et al. [3], Barge and
Gerardine [8], and Almudayni et al. [14] surveyed various techniques such as clock
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gating, voltage and frequency scaling, and Al-based methods to improve energy
use in IoT systems. Kumar et al. [3] also highlighted the trade-offs involved in
achieving a balance between security, interoperability, and performance.
Almudayni et al. [14] proposed bio-inspired algorithms and fuzzy logic-based
approaches, while Barge and Gerardine [8] offered a detailed architectural analysis
aimed at extending battery life.

Furthermore, EH has been the focus of studies by [11], [5], [10], and [13], each
proposing a way to support self-sustaining IoT systems. Study [11] adopted a
layered view, mapping EH sources to specific device functions. Study [5] examined
LoRa-based methods for conserving energy, while [10] supported its analysis with
real-world case studies. Study [13] developed a structured classification of EH
techniques, optimization strategies, and efficiency metrics. Similatly,
communication methods also play a central role in energy optimization. Souri et
al. [12], [7], and Ali et al. [15] investigated communication protocols, scalability,
and intelligent approaches to reduce energy overhead. Souri et al. [12] surveyed
IoT communication trends, with attention to security and scalability. Lastly,
authors in [7] linked smart building energy management to IoT policy constraints,
and Ali et al. [15] examined energy-efficient communication strategies in
underwater IoT (IoUT) environments.

Table 1. Summary of related works

Study Focus Findings Key Strengths Limitations
[1] Energy-saving Identifies Rigorous SLR; Limited empirical
techniques  for energy broad coverage (44 validation; lacks
IoT devices using parameters studies); dual-layer comparative
LoRa (transmission focus (IoT and metrics;
power, LoRa) scalability ~ not
bandwidth); analysed
categorizes
techniques
(harvesting,
transfer,
conservation);
analyzes
geographic
research trends
2] Fault tolerance in  Classifies fault- Systematic Mostly
green cloud tolerance classification; theoretical; lacks
computing approaches identifies gaps; and real-wotld
(proactive  vs. addresses validation.
reactive); automation and
examines user control
energy-fault
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Study Focus Findings Key Strengths Limitations
trade-offs with
AI/ML.

[3] Low-power Reviews Broad scope; real- Limited

design for IoT hardware wotld applications; quantitative
devices (DVES, MEMS includes case analysis: security-
sensors), studies power trade-offs
software, and not addressed
EH methods
[4] Energy-efficient  Uses ML for Strong taxonomy: No performance
routing in adaptive acoustic  channel comparisons;
UWSNs routing; constraints lacks
addresses cross- considered experimental
layer and validation
security
considerations
[5] Energy-saving Categorizes Structured ~ SLR; Mostly
schemes in IoT- energy regional trends descriptive; data
TLoRa parameters and identified limited to pre-
conservation 2022
methods; notes
geographic
research trends.

[6] EE in SDWSNs  Reviews major Comprehensive No  deployment
energy challenge overview:  studies; lacks
consumers; future  directions empirical testing
discusses outlined
routing,  sleep
scheduling, and
Al-based
optimization

[7] IoT applications Review Multidimensional ~ Mostly

for energy architecture, perspective; descriptive;  no
management in protocols, includes policy case studies or
smart buildings adoption insights evaluations
bartiers, and
application
domains
[8] Architectural Covers power Technical depth; No experimental
low-power gating, voltage links architecture results; lack
design for IoT scaling, to IoT constraints ~ combined
hardware method
acceleration evaluations
[9] EE in IoT Integrates Wide scope; links No  quantitative
systems hardware, Al to energy goals  comparisons:
protocols, Al implementation

and renewables;
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Study Focus Findings Key Strengths Limitations
promotes cross- issues not
layer discussed
optimization

[10] EH techniques Identifies EH Conceptual clarity; No comparative

for IoT sources and includes practical analysis of EH
real-world case studies efficiency
strategies

[11] EH within IoT Maps EH Framework aligns Limited technical

layered sources to IoT EH with system depth on
architecture layers; discusses needs implementation
storage and
power
management
[12] IoT Review five Clear taxonomy; Lacks critical
communication strategy  types, identifies open analysis; English-
strategies technologies, challenges only literature
and evaluation
metrics
[13] Energy Covers energy Thematically No performance
management in efficiency, organized; domain- evaluation; lacks
IoT harvesting, and spanning technical detail
optimization
techniques
[14] Causes of energy Proposes a Strong conceptual No empirical
inefficiency  in multi-layered depth; integrates validation; lacks
ToT framework Al with comparative
using optimized communication performance
protocols, fuzzy efficiency analysis
logic, and bio-
inspired
methods
[15] Energy-saving Identifies Rigorous SLR; Limited empirical
techniques  for energy broad coverage (44 validation; lacks
IoT devices using parameters studies); dual-layer comparative
LoRa (transmission focus (IoT and metrics;
power, LoRa) scalability ~ not
bandwidth); analysed
categorizes

techniques (EH,
transfer,
conservation);
analyzes
geographic
research trends
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As shown in Table 1, recent IoT EE reviews reflect a broad but disjointed focus,
with most studies targeting isolated techniques instead of pursuing integrated
solutions. Studies like [5], [10], and [11] focused on EH, while [4] and [12] explored
network optimization and routing strategies but lacked discussion on hardware-
based EE and cross-layer approaches. Additionally, [5], [10], and [11] provided
limited quantitative comparisons, resulting in a lack of assessing the deployment
trade-offs. Research on low-power design and underwater IoT EE in [3], [8], and
[15] overlooked security overhead implications, while Ali et al. [15] examined REI
and software-driven efficiency. Studies [0], [13], and [14] addressed optimization
across IoT layers but did not analyse interactions between layers in multi-protocol
environments. Likewise, Poyyamozhi et al. [7] and Manohar & Dharini [9]
discussed smart energy management but failed to include standardization
challenges in protocol compatibility, interoperability, and regulatory frameworks.
Given the above studies, it is important future research should adopt a more
integrated approach, incorporating advancements in hardware, software,
communication, EH, and Al-driven optimization. The purpose of this paper is to
explore these gaps with collaborative, cross-layer strategies to provide scalable,
adaptable solutions tailored to evolving IoT applications, the purpose of this paper.

3. METHODS

This employs a systematic literature review approach to analyze advancements in
IoT EE techniques for resource-constrained devices and large-scale deployments.
It focuses on hardware-based, software-based, and network efficiency, Al-driven
energy optimizations, DSEM and security-enhanced frameworks. Relevant peer-
reviewed journal articles and conference papers from 2021-2025 were selected for
this review. Sources include IEEE Xplore, ScienceDirect, Web of Science,
SpringerLink, and Google Scholar. The selection criteria focused on relevance to
the topic, citation impact, evidence of technological innovation, and empirical
validation to ensure high quality in the study. Our data extraction followed a three-
stage process: (1) Initial screening, filtering abstracts and keywords to align with
inclusion criteria; (2) Categorization, classifying studies into individual and hybrid
techniques; and (3) Trends and gap analysis, synthesizing findings to highlight key
developments, limitations, and future research directions. The evaluation process
combined qualitative and quantitative analysis, following the Preferred Reporting
Items for PRISMA guidelines [16] to ensure transparency, reproducibility, and
structured reporting.

Using PRISMA, search terms included “energy efficiency techniques in IoT,” “IoT
energy management techniques,” “hardware-based EE techniques,” “software-
based EE techniques,” and “Al-based EE optimization,” guided by Boolean
operators “OR” and “AND.” Initially, 210 relevant articles were retrieved, with 8
duplicates removed, leaving 155 studies for screening. Following the eligibility
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assessment, 55 studies were excluded due to a lack of empirical analysis or duplicate
contributions, resulting in 82 selected papers. Inclusion criteria focused on
relevance to IoT energy management, technological innovation, empirical
validation, theoretical models, and practical implementations, including future
research discussions. Exclusion criteria filtered out studies outside IoT/WSN
scope, outdated papers, duplicates, and inaccessible full texts.

Papers identified
through database
searching (n=210)

Papers screened Papers excluded
(n=155) (n=55)

Full-text articles
assessed for eligibility
(n=100)

Full-text articles excluded,
with reasons
(n=18)

Studies included in
qualitative synthesis
(n=82)

Figure 3. PRISMA process of selected studies

4. RESULTS AND DISCUSSION
4.1. Energy Efficiency State-of-The-Art

This section analyses various EE techniques used in IoT systems to improve device
performance and network lifetime. In practice, EE is rarely achieved through a
single method. Most real-world solutions combine, hardware, software,
networking, and communication and intelligent-based approaches to meet energy
demands in different conditions. In the studies reviewed, around 95% of the
techniques were hybrid-based, for instance, combining low-power hardware, REI,
Al-driven optimization, and dynamic energy management. These strategies not
only improve reliability and lifespan but also help reduce environmental impact.
These studies are summarized in Tables 2 to 13. This shows that careful design
remains crucial to balancing cost, complexity, and dependability in energy-efficient
IoT deployments.
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1) Software-based Methods

Software-based techniques or smart algorithms improve EE in IoT devices by
managing tasks intelligently, even on low-power hardware. These approaches
significantly reduce energy use via smarter software execution and some of the
studies are summarized in Table 2. Liu et al. [17] developed a task-scheduling
algorithm for EC systems using heterogeneous multicore processors (HMPs) to
minimize energy use while ensuring deadline adherence. Their approach integrates
task prioritization, core-aware mapping, and predictive DVFS. Tasks are ranked
based on deadlines and dependencies, mapped using a performance-execution-
time-power suitability score, and assigned DVES settings based on estimated
energy consumption. Experiments on an ODROID-XU4 platform demonstrate
significant energy savings and consistent deadline adherence, making it a scalable
solution for edge scheduling. Likewise, Ketshabetswe et al. [18] improved two
adaptive lossless data compression algorithms: ALDC and FELACS, to reduce the
energy cost of data transmission in WSNs. They enhanced ALDC by dynamically
selecting shorter Huffman codes, boosting energy savings from 73% to 77%.
FELACS was refined with an outlier detection method that reduces data variability,
improving both compression and accuracy. Performance evaluations using real-
world datasets identified an optimal block size of 1000 samples for efficient
transmission.

Beyond software techniques, EC enhances EE by enabling local data processing.
Bhatia [19] proposed a hierarchical IoT-edge framework that integrates inactivity
modes, load balancing, and predictive algorithms to optimize power consumption.
The system manages sensor activity, predicts idle periods, and reallocates resources
while dynamically switching IoT nodes based on battery levels and usage patterns.
A medical campus deployment validated its effectiveness, showing a 29.46%
reduction in energy use and improved network stability with a lower packet loss
ratio of 0.51%. Hua et al. [20] also introduced a mobility-aware task scheduling
framework for edge-cloud computing, enabling flexible task execution between
local devices, edge servers, and the cloud. They formulated the problem as a mixed-
integer program (MIP) and proposed a heuristic algorithm (MAH) to overcome
computational complexity. Simulations demonstrate a 93% reduction in mobile
device energy use while maintaining low-latency performance, particularly as time
slots increase. Moreover, Harb et al. [21] designed CLARA, an adaptive sampling
and fault-tolerant recovery method for periodic WSNS, leveraging spatial-temporal
correlation and smoothing algorithms. While effective under stable conditions,
CLARA’s reliance on fixed parameters may limit performance in dynamic or
heterogeneous settings. Small-scale real-world evaluations confirm its practicality.
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Table 2. Summary of software-based EE methods

Ref. Objective EE System Implementation Evaluation Results Limitations
Techniques Components / Approaches Metrics
[17] EE DVES, task- Edge nodes Energy-aware Energy use, 20.9% Migration
scheduling level (ARM scheduling, deadline power overhead
for edge optimization big.LITTLE) predictive task- miss rate reduction  ignored
devices core mapping
[18] EE via Huffman- WSN  nodes ALDC with Energy 77% High
adaptive optimized (env. data) Huffman; saved, energy compute cost;
compression ALDC, FELACS tuned compression  saved; untested on
in WSNs FELACS for accuracy ratio, 50% diverse
outlier codeword smaller sensors
detection size codeword
[19] IoT-edge Inactivity IoT-edge with  3-layer Energy use, 29.46% Narrow  test
hierarchical ~ mode, EE gateways, architecture + PLR, system energy scope; theory
EE resource sensors blockchain stability saved; limits
framework allocation, security PLR generalization
predictive 0.51%;
models MAS
84.69%
[20]  Mobility- Power Mobiles, Dynamic cost Energy, MA-MIP
aware edge- control, edge/cloud matrix; iterative latency, QoS saves
cloud EE offloading, servers, LTE MIP compliance 93%; scales poorly
scheduling BS MAH
efficient
& simpler
[21] Boost WSN Data Cluster-heads, Sampling rate + Alive nodes, 064% data Needs
via reduction, sink fault-tolerance energy, drop; deployment
adaptive fault algorithms packets, error tuning
sampling tolerance lifespan <0.15
(MA)

2) Software-based with Al-optimization Methods

As stated above, hybrid dynamic approaches such as software-based EE and Al-
based optimization are integrated to improve IoT energy management. They utilize
real-time data from sensors and smart meters, which are analysed by Al-driven
algorithms to predict energy demand and allocate EE. Unlike traditional methods,
these Al-drive technologies continuously adapt to changing conditions, ensuring
optimal resource allocation, and minimizing energy waste. Several studies have
contributed to Al-based energy optimization integrated with security and fault
tolerance to improve sustainability and reduce energy use as summarized in Table
3 and Table 4. Aljohani [22] proposed a transformer-based DL framework for
energy demand forecasting in smart city IoT networks. It captures spatial and
temporal dependencies to generate real-time predictions, integrating IoT devices,
sensors, and smart grids via cloud computing for dynamic energy management.
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Case studies show reduced energy use, costs, and emissions, with strong
stakeholder support. Similarly, Raval et al. [23] combined multi-agent systems and
genetic algorithms (GAs) for decentralized energy management. Their energy
transparency protocol modelled consumption as sensing, processing, and
communication functions. The RL-based fuzzy logic with GAs improves sensing
and energy usage across IoT swarms, achieving a 19% reduction in consumption
rate and 40% lower total energy use per time step, improving stability. Wang et al.
[24] also developed MADC, a scalable DRL algorithm for improving RPL routing
in 1oT networks. They used centralized training and decentralized execution
alongside lightweight actor networks for real-time decisions, integrating multi-scale
convolution and multi-head self-attention for robust evaluation. Simulations show
superior energy efficiency, packet delivery, and queue loss compared to existing
RPL methods. In the same vein, Mutombo et al. [25] developed EER-RL, an RL-
based energy-aware routing protocol for IoT networks. They employed Q-learning
in a cluster-based model, nodes select next-hop routes based on residual energy
and hop count to enable decentralized learning without global state reliance.
Simulations indicate improved energy efficiency and network lifetime over
LEACH and PEGASIS, particulatly in larger networks.

Furthermore, Godfrey et al. [26] introduced a distributed opportunistic scheduling
(DOS) protocol using RL for SDWSN in IoT, optimizing EE. The RL agent
dynamically prioritizes objectives like energy use, load balancing, and link quality
using real-time confidence estimates and shaped rewards. NS-3 simulations show
that DOS-RL surpasses OSPF and SDN-based Q-routing in packet delivery,
latency, and EE across various conditions. In a similar study, Rashid et al. [27]
suggested an adaptive CNN for energy-efficient human activity recognition
(AHAR) on low-power wearable devices. Instead of early-exit decisions based on
classification confidence, they introduced an Output Block Predictor (OBP) using
statistical features to determine whether to use a lightweight or full CNN path
during inference. Validation on two public datasets confirms improved accuracy,
reduced energy consumption, and lower memory usage compared to state-of-the-
art methods. AHAR runs efficiently on microcontrollers, making it suitable for
wearable health monitoring. Balakrishnan and Rajkumar [28] proposed an
improved metaheuristic algorithm for optimizing cluster head (CH) selection in
IoT-based healthcare systems. Their method is based on the Mayfly optimization
algorithm (MOA) with an active elite approach (AEA). It dynamically adjusts the
search space to create elite candidates and avoid local optima, ensuring balanced
energy use and extended network lifetime. Evaluated within a broader system
combining biometric authentication, RL-based routing, and ECC for secure
transmission, the method shows effectiveness. EMOA-AEA outperforms existing
methods in energy use, network lifetime, and throughput, demonstrating Al-
improved clustering as a valuable technique for medical IoT.
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To improve EE and communication security in EVs within the smart grid, Bhaskar
et al. [29] proposed an IoT, ML, and blockchain-based system. In this case, IoT
sensors enable real-time monitoring of battery levels and location, while a Random
Forest classifier optimizes charging station selection. Additionally, a permissioned
blockchain with ECC encryption ensures secure authentication and transactions.
Simulations show a 94.5% accuracy in station selection, reduced wait times, lower
communication overhead, and decreased charging costs. Likewise, Liu et al. [30]
introduced QEGWO, a clustering algorithm combining quantum mechanics-
inspired clustering with Al-based Gray Wolf Optimization (GWO) to improve EE
in Industrial WSNs (IWSNs). The model optimizes residual energy, intra-cluster
distance, and base station proximity, combining a simplified quantum operator and
dynamic elite pool for better global search and convergence speed. Simulations
confirm superior performance in network lifetime, energy distribution, and delay.
Ali etal. [31] equally developed E-FLZSEP, an adaptive fuzzy logic-based protocol
for CH selection in WSNSs. It integrates voltage, node density, and base station
distance to improve cluster lifespan and data delivery efficiency. The authors
highlight fuzzy logic’s ability to handle nonlinearity, combining clustering with

multipath routing for improved fault tolerance and load balancing.

Table 3. Summary of Al-driven software-based EE methods

L. EE System Implementation Evaluation s .
Ref  Objective Techniques C};mponents / AIl,)proaches Metrics Results  Limitations
[22]  Al-based Dynamic IoT, smart Edge DL models; Energy use, Better Narrow
energy load grids, cloud, real-world cost, model efficienc scope of
optimizatio  prediction,  urban infra validation accuracy y sustainabilit
n in smart real-time reduces vy
cities adaptation the cost
[23] Decentraliz  Adaptive IoT swarms, RL  adaptation; Energy rate, 40% Limited

ed Al sensing, AI- LPWAN GA optimization ~ stabilization —energy interference

energy based (LoRa, reductio  handling

managemen control Sigfox) n

t

[24]  Scalable EE DRL with IIoT nodes Actor-network Energy, +40% Simulation-
routing in centralized  (RPL) with attention & lifetime, lifetime,  only;

IIoT training dual critic delivery +16.7%  potential
distributed ratio delivery  complexity
execution

[25] RL-based Q-learning  Clustered IoT' RL for adaptive Lifetime, Outperf Memory
routing in with WSNs  with routing energy, orms cost; not

IoT WSNs  residual power limits scalability LEACH deployed
energy &
reward PEGAS

1S
[26]  Mult- Shaped- SDWSN CMOMDP, & PDR, delay, 10-20% Simulation-
objective reward RL (sensing/cont greedy Q- energy better only;

EE routing routing learning PDR,
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E

System

Implementation

Evaluation

Ref  Objective Techniques Components / Approaches Metrics Results  Limitations
in SDWSN- rol/app lower scalability
IoT layers) delay unclear
[27] EE CNN Hardware- EFM32 Tested with HAR  Energy, 12% HAR-
for HAR on aware exec MCU, mult- datasets memoty, energy  specific;
edge path control output CNN runtime, F1  saved, dataset
similar ~ bound
accuracy
28] CH Energy- Body sensors, Elite-based Lifetime, 43.9% Encryption
selection in aware sink, crypto metaheuristic throughput, better +
IoT clustering,  modules strategy security through  optimizatio
healthcare secure put, n overhead
routing longer
life
[29]  Secure, EE EV EV sensors, ML for charging; Accuracy, 94.5%  Cost and
efficient EV  charging, ML models, blockchain wait time, accuracy scalability
energy secure blockchain, security overhead, ;15.45% concerns
managemen transactions chargers capacity 1 wait
t time;
63% |
overhea
d
[30] EE EE Static nodes, Simulated in Energy, Beats Simulation-
clustering in  clustering, =~ CHs, BS diverse ~ IWSN delay, baseline only; fixed-
IWSNs multihop setups longevity s in node
transmissio energy  assumption
n & delay
[31]  Lifetime Adaptive CHs, BS Fuzzy logic + Nodedeath, +30%  Low
extension CH election multipath routing  alive %, lifetime, adaptability
via CH by node throughput, -35% to topology
balancing energy energy energy  change

Rami et al. [32] introduced EECHIGWO, an improved GWO-based algorithm for
energy-efficient CH selection in WSNs. It tackles premature convergence and the
imbalance between exploration and exploitation by combining residual energy,
sink distance, cluster head balancing, and intra-cluster distance into the fitness
function. Simulations show improved network stability, energy use, network
lifetime, and throughput compared to existing protocols in optimizing CH
selection to balance energy use and extend node lifespan. Similarly, Devassy et al.
[33] suggested NBA, a hybrid clustering protocol combining LEACH with the
Dragonfly Algorithm (DA) to improve EE in WSNs for IoT applications. In the
approach, NBA optimizes CH selection by modelling it as an optimization
problem, incorporating dragonfly-inspired behaviours for better energy balance
using swarm intelligence. Simulations confirm superior packet delivery, network
longevity, and scalability over standard LEACH, emphasizing bio-inspired Al
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strategies for energy-efficient IoT networks. Moreover, Tewari and Tripathi [34]
developed NFEER, a neuro-fuzzy clustering protocol for IoT-enabled WSNs to
optimize energy use in battery-powered sensor nodes. In their method, CH
selection is based on distance to sink, cluster size, and residual energy, mitigating
hotspot issues using a neuro-fuzzy inference system. The protocol surpasses PSO-
Kmean, BMHGA, and FSO-PSO in network lifetime, stability, and throughput,
though its reliance on a static sink and ideal transmission conditions remains a
limitation. In a similar but different approach, Vaiyapuri et al. [35] suggested CBR-
ICWSN, a hybrid clustering and routing protocol for efficient data collection in
IoT-enabled ICWSNs within Mobile EC (MEC) settings. They employed black
widow optimization (BWO) for CH selection and oppositional artificial bee
colonies (OABC) for routing to ensure scalability and resource constraints in large
networks. Simulations show improved energy efficiency, reduced packet loss, and
higher network throughput compared to traditional protocols.

Still, on clustering and routing for EE, Senthil et al. [36] focused on the challenges
of IoT-based WSNs by introducing Orphan-LEACH (O-LEACH) and two hybrid
optimization algorithms, SA-LSA and PSO-LSA. O-LEACH mitigates orphan
node issues by allowing nodes outside standard clusters to act as gateways or form
sub-clusters to improve coverage and reduce data loss. PSO-LSA and SA-LSA
improve CH selection and routing using global and local search techniques.
Experimental results show PSO-LSA's superiority in cluster formation, delay,
packet loss, and network lifetime, proving its suitability for energy-constrained IoT
scenarios. In parallel, Cherappa et al. [37] proposed a hybrid clustering and routing
strategy combining Adaptive Sailfish Optimization (ASFO) with K-medoids
clustering and E-CERP, a cross-layer routing protocol. The Al-driven clustering
optimizes CH selection based on energy and proximity, while E-CERP enables
efficient multi-hop routing. Simulations show enhanced energy savings and packet
delivery accuracy, outperforming existing methods and proving the ASFO-K-
medoids and E-CERP approach effective for WSNs. In the same way,
Lakshmanna et al. [38] developed IMD-EACBR, an energy-aware cluster-based
routing scheme integrating an improved Archimedes optimization algorithm
(IAOA) for CH selection and teaching—learning-based optimization (TLBO) for
multi-hop routing. While clustering considers energy levels, node distances, and
network topology, routing prioritizes nodes with higher residual energy and shorter
transmission distances. NS-3 simulations show substantial improvements in
network lifespan, energy efficiency, and data delivery over other metaheuristic
protocols.
Table 4. Summary of Al-driven software-based EE methods

Ref.  Objective EE System Implementation  Evaluatio Results  Limitations
Techniques Components / Approaches n Metrics
[32] Improve Metaheurist WSN nodes, MATLAB-based Lifetime, +333.51 Simulation-
EE & ic clustering  BS, fixed dynamic CH throughp % only; real-
multi-hop model ut, node stability, world
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Ref.  Objective EE System Implementation  Evaluatio Results  Limitations
Techniques Components / Approaches n Metrics
stability in deaths extende  scalability
WSNs (FND/H d untested
ND/LN lifetime
D)
[33] Lower Bio- WSN  nodes, Simulated with Live More Needs
energy use inspired CH CHs, BS 100 nodes nodes, live tuning;
&  extend selection (MATLAB) packet nodes,  lacks
WSN life ratio, better deployment
energy use  delivery
[34] Enhance Neural, Heterogeneo ~ Compared Stability,  +28% Fixed sink;
routing via fuzzy logic us WSN NFEER to PSO- lifetime, stability; ignores
neuro-fuzzy for CHs nodes, CHs, Kmean, throughp  103.5—  physical
logic Sink BMHGA, FSO- ut,energy 14225 layer factors
PSO %
longer
life
[35] Better data Swarm, bio- WSN nodes, Custom protocol Lifetime, Higher  Simulation-
collection &  inspired CHs, Master with delay, efficienc only; ML
routing routing Station BWO/OABC energy, y, lower integration
loss, PDR  delay unexplored
[36] EE via Swarm/met WSN nodes, Hybrid CH and Cluster PSO- Not tested
orphan aheuristic CHs, BS, path selection formation LSA in real
node routing & otrphans, sub- protocol ,  delay, cuts settings;
managemen  clustering clusters loss, delay, scalability
t lifetime boosts  unclear
lifetime
[37] EE Cross-layer  WSN nodes, Simulated with Energy, E- Static
clustering & routing, EE CHs, BS, 500 nodes lifetime, CERP:  sensors; no
routing in clustering routing stack PDR, 1.97 m] mobility
WSNs delay, vs. analysis
throughp  7.75 mJ,
ut, jitter 100%
PDR
[38] EE routing Cluster- WSN  nodes, Simulated in NS- Lifetime, = PDR Requires
for IoT- based CHs, BS, 3.26 node 95.5%,  tuning; no
assisted routing optimizer status, Longer  real-world
WSNs optimizatio energy, life, test
n throughp  better
ut, PDR through
put,
lower
enetgy
use

1492 | A Comprebensive Review of Energy Optimization Techniques in the Internet of .....



Journal of Information Systems and Informatics
Vol. 7, No. 2, June 2025

p-ISSN: 2656-5935  http://journal-isi.org/index.php /isi e-ISSN: 2656-4882

3) Software-based with Edge Computing, DSEM and Al-optimization

This section analyses EE techniques that combine software-driven methods, EC,
and Al-based optimization to improve adaptability. Additionally, while some
approaches incorporate security, others employ fault tolerance for system
resilience. These algorithms improve power use by activating devices only when
needed, while EC minimizes latency and cloud-related costs through local
processing. Energy usage is optimized via demand prediction, automated control,
and continuous energy flow refinement. Table 5 summarizes key studies. Akbari
et al. [39] suggested a decentralized method for optimizing virtual network
function (VNF) placement. This is mostly used in UAV-assisted Mobile EC (MEC)
systems for smart agriculture, balancing timely data processing based on Age of
Information (Aol) and EE. They employed a decentralized partially observed
Markov decision process (DEC-POMDP) to model UAV interactions as well as
an asynchronous federated deep Q-network (AFDQN) approach for collaborative
VNF placement without raw data sharing. Simulations confirm lower Aol and
higher EE compared to centralized methods, making it ideal for agricultural IoT.
In the same vein, Ruby et al. [40] developed a two-tier FL architecture to deal with
inefficiencies in traditional centralized FL systems under non-1ID data
distributions and energy constraints. The framework features IoT clients, low-
altitude UAVs for edge aggregation, and a high-altitude UAV as the central
aggregator. By solving an optimization problem through dual decomposition and
bisection search, the system minimizes computation and communication energy
under time constraints. Offline and online client scheduling prioritizes participants
based on model divergence weight and EE. Simulations using real-world data
demonstrate reduced energy consumption and improved learning accuracy
compared to existing methods.

4) DSEMs with Al-optimization

This section focuses on Al-driven optimization within DSEM, which dynamically
adjusts consumption based on real-time grid conditions to improve efficiency and
reduce costs. Table 5 summarizes key findings. Khodaparast et al. [41] suggested
an energy-efficient DRL-based multi-agent framework for data collection in UAV-
assisted IoT networks. The approach is divided into: UAV navigation, sensor
power management, and multi-UAV coordination. Each is tackled with specialized
DRL algorithms: Deep Deterministic Policy Gradient (DDPG) for continuous
control and DQL for discrete scheduling, to ensure improved performance. The
approach effectively tackles energy constraints for both UAVs and sensors,
particularly in dynamic, obstacle-prone environments. Simulation results show the
framework’s effectiveness with significant energy savings and adaptability over
conventional methods. Similarly, Ramadan et al. [42] investigated non-intrusive
load monitoring (NILM) combined with IoT technologies to improve EE in
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residential settings. Using a Factorial Hidden Markov Model (FHMM), they
disaggregated household electricity consumption by appliance from a single
measurement point. Integrated with ThingSpeak for real-time visualization and
Twitter alerts, the system outperformed combinatorial optimization (CO) in
appliance-level prediction, achieving lower RMSE values. It also facilitates
consumer load-shifting based on ToU pricing,.
suggested Signal-Dependent Sampling (SDS) to reduce 10T cyber-physical system
(CPS) energy use. Unlike uniform sampling, SDS dynamically adjusts based on
signal activity, achieving up to 94% power reduction with minimal precision loss.
Case studies in ECG and greenhouse monitoring confirm the method's
effectiveness in environmental applications, though ECG signals require careful
tuning for diagnostic reliability.

Table 5. Summary of Al-driven software-based EE methods with EC and

Hafshejani et al. [43] equally

DSEM
L. EE System Implementation Evaluation s .
Ref  Objective Techniques Coni’ponents / I1,&pproaches Metrics Results Limitations
[39] VNF Disttibuted UAVs, MEC UAV agents use Aol, energy, Aol Fixed
orchestration  learning for servers, IoT AFDQN; a  robustness <200ms; powet/bandwidth;
in UAV-  resource nodes decentralized better EE  scalability untested
MEC for efficiency setup Vvs.
smart centralized
farming model
[40] EE resource Computation- IoT  clients, Offline/online Energy, —25% Complex
allocation for communication UAVs, scheduling, accuracy, energy, computation;  no
FL balancing, OFDMA bisection search workload +40% real-wotld
parallelism subchannels balance accuracy deployment
vs. baseline
[41] Reduce total DRI-based UAVs DDPG Energy 90.8% No interference
energy use of  trajectory (mobility, (trajectory, consumption, success; model; fixed
UAVs and planning, collection), power); DQL  success rate, adaptive altitude; simplified
sensors transmit power sensors (data (scheduling); DRL power battery; limited
during data control, multi- sources), DRL finite-horizon convergence, more environmental
collection UAV agents MDP task allocation  efficient; dynamics
while scheduling neat-
ensuring task optimal
completion scheduling
[42]  Residential Load Smart meters, FHMM on RMSE, FHMM Limited validation;
EE via disaggregation, FHMM, REDD  dataset; responsiveness, RMSE: low-frequency data
NILM & IoT  behavioutal ThingSpeak real-time alerts load shift 37.6W wvs. limits accuracy
alerts demand cO
response 49.46W;
peak load
cut
[43] Lower IoT Rateadjustment ECG, Bottom-up, Sampling, 94% Needs careful
CPS power based on signal greenhouse software-only energy use, energy tuning for complex
usage features monitots sampling control  regen. error, saved; signals
accuracy minor
accuracy
impact
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5) Network-based Methods

This subsection discusses the studies that focused on network and communication
optimization techniques to enhance EE in IoT systems. These techniques reduce
communication overhead, refine routing protocols, and minimize energy-intensive
network operations. Some studies employing these methods as standalone EE
schemes are summarized in Table 6. Al-Sammak et al. [44] introduced an adaptive
transmission algorithm for loT-based smart meters which dynamically adjust
transmission intervals based on real-time electrical variations. Implemented on
Arduino prototypes with LoRaWAN and NB-IoT, it achieved an 86.81%
reduction in packet transmissions and over 87% energy savings, validated through
paired T-tests. The method enhances network stability but is sensitive to threshold
value selection. Likewise, Wei et al. [45] proposed an over-the-air (OTA) update
mechanism for DL models in low-power EH IoT devices, addressing intermittent
power and communication constraints. Their approach integrates delta encoding
for weight-change transmission, an energy-aware communication protocol, and
runtime mechanisms for stable updates under power fluctuations. Tested on a TI-
MSP430FR5994 device with BLE and a Raspberry Pi 4 edge server, it
demonstrated a 7.3% reduction in update size, 25-30% energy savings, and a 45%
improvement in update completion. Also, Duy et al. [46] developed EEGT, a grid-
based routing protocol to improve energy distribution and hierarchical
communication in WSNs. Utilizing multi-criteria CH node (CHN) selection,
minimum spanning tree (MST) based intra-cell routing, and ACO-driven inter-cell
routing, it optimizes transmission energy costs. While simulations indicate
efficiency gains, the complexity of hybrid routing and the absence of hardware
validation may limit the actual deployment.

6) Network-based Optimized with Al-driven Methods

This subsection discusses studies that optimized network approaches with Al-
based methods while incorporating security and fault tolerance, as summarized in
Table 6. Gang et al. [47] proposed an energy-efficient MAC protocol for UWSNs
using Q-learning-based RL to mitigate collisions and extend network lifespan. Rx
nodes dynamically adapt transmission strategies based on local observations,
interference, battery status, and collisions, without requiring explicit coordination.
Simulations show improved throughput, 38% fewer collisions, reduced energy use,
and enhanced delay performance over standard MAC protocols. In parallel,
Venkatachalam et al. [48] developed EEGP-MAC, a hybrid multi-agent MAC
protocol integrating Q-learning and the Honey Badger Algorithm (HBA) for
adaptive resource management. Their group-based prioritization scheme classifies
nodes by location, energy level, and traffic type, assigning transmission priorities
dynamically. Within each group, the QL-HBA algorithm selects optimal
contending nodes using a fitness function based on local traffic and
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neighbourhood density. NS-3 simulations confirm EEGP-MAC outperforms
IEEE 802.15.4, Hybrid-MAC, and QL-DGMAC in delay, energy efficiency,
throughput, and packet delivery. Sellami et al. [49] focused on energy-aware task
scheduling and offloading in 5G IoT edge networks using Deep RL (DRL) with
an Asynchronous Actor-Critic Agent algorithm (A3C), SDN, and blockchain. The
A3C algorithm optimizes task scheduling, while Proof-of-Authority (PoA)
consensus secures communications, balancing computational load across edge and
fog nodes. Simulations show reductions in energy consumption and processing
delays, along with increased transaction throughput compared to PBFT. However,
blockchain integration presents a complexity, with potential scalability and privacy
concerns.

In a similar study, Singh et al. [50] proposed a six-tier smart parking framework
integrating RSU-based blockchain for data authentication, ECC for secure
communication, virtualization for efficient storage, and Deep LSTM for parking
data analysis and recommendations. In addressing issues such as centralization,
bandwidth constraints, and privacy risks, simulations show improved EE, data
privacy, integrity, and availability. Abdi et al. [51] equally developed RLBEEP, an
RL-driven protocol optimizing routing, sleep scheduling, and transmission
restriction to extend the WSN lifespan. RL allows nodes to acquire energy-efficient
policies based on residual energy, hop count, and distance, while sleep scheduling
and transmission control minimize unnecessary consumption. Simulations show
enhanced network lifetime compared to other RI-based protocols, though high
computational demands at the sink node limit scalability in resource-constrained
environments. Yugank et al. [52] in their study focused on ANN-driven duty cycle
optimization for battery-constrained Systems-on-Chip (SoCs) in data
communication.

They analyse operational parameters like duty cycle and power usage which are
used by the ANN model to predict optimal power states, balancing energy during
transmissions. The model was trained using a Scaled Conjugate Gradient (SCG)
and evaluated with Mean Square Error (MSE). Experimental results show that a
40%-50% duty cycle threshold maximizes efficiency, offering a practical way to
reduce energy used in real-time deployments. Furthermore, Javadpour et al. [53]
suggested a distributed routing protocol incorporating fuzzy clustering and PSO
for energy-aware load balancing in IoT-based WSNs. The method utilizes Fuzzy
C-Means clustering for sensor grouping and PSO for optimal CH selection,
enhancing the stability and computational efficiency in routing. NS-2 simulations
indicate a 9.57% increase in throughput and an 8.47% reduction in energy use
compared to existing protocols.
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Ref. Objective EE System Implementation / Evaluation Key Limitations
Techniques Components Approaches Metrics Results

[44]  Adaptive Real-time Smart Microcontroller-  Packet count, 88.5% Scalability
transmissio  scheduling  gas/water driven adaptive reliability reductio  and security
nin IoT via LPWAN  meters with transmission nin not analyzed
meters (LoRaWAN LPWAN energy

, NB-IoT) spikes

[45] EE OTA Compressio  Edge server Real-hardware Update size,  7.3% Needs
DL model  n, energy- (RPi 4), T1- OTA updates energy, smaller tuning;
updates aware MSP430FR59 robustness updates,  scalability

transmission 94, LeNet-5 25-30%  unclear
energy
savings

[46]  Optimize Dynamic Sensor nodes,  MST intra-cell, Energy, +30% No hardwate
WSN CHN grid clusters ACO inter-cell uptime, efficienc  test; routing
lifespan selection, harvested y over complexity

ACO energy LEACH-
routing C

[47] EE MAC Adaptive UWSN: CHs,  Q-learning for Throughput,  +23% Needs large
protocol TX power, Rx nodes, slot scheduling delay, PDR, throughp  training data;
with RL collision sink utilization ut, —38%  static nodes;
for avoidance collisions  no real
UWSNs validation

[48] EE MAC Hybrid Q- Grouped IoT  Priority-based Delay, 45% Algorithm
for large- learning devices (by hybrid energy, PDR,  energy complexity;
scale IoT with HBA energy/locati  contention throughput cut, 10%  simulation-

on/traffic) strategy PDR only
gain

[49] Energy- DRL IoT devices, DRL offloading,  Latency, Lowest Blockchain
aware scheduling,  fog nodes, PoA Blockchain  throughput, latency overhead;
offloading ~ PoA SDN, comparison energy (8.3s); complex real
in 5G IoT  Blockchain ~ Blockchain 6M txns  deployment

security (vs. 5M
PBFT)

[50] EE smart Virtualizatio  Sensors, ECC encryption,  Energy, time  Virtualiz ~ Scalability,
parking n, ECC, RSUs, VMs, LSTM prediction  cost, ation real EE
with DL-based Blockchain accuracy, boosts impact
security prediction nodes privacy EE; untested

secute
authentic
ation

[51]  Prolong Sleep Sensor nodes, RL reward-based  Energy, Delays High
WSN life scheduling,  sink sleep scheduling  signal FND by  compute
with RL adaptive accuracy, 25-35%, demand;

control overhead reduces slow
energy convergence

[52]  ANN for Duty cycle IoT sensors, MATLAB MSE, duty ~50% No hardwate
IoT power  tuning, SoCs, simulation Y%, power duty validation
modeling ANN power transceivers usage cycle;

prediction accurate
power
modeling
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Ref. Objective EE System Implementation / Evaluation Key Limitations
Techniques Components Approaches Metrics Results
[33] EE& Fuzzy CH, routing Two-phase: FCM  Throughput, +9.57%  No mobility
longevity clustering, protocols for clustering, delay, energy, throughp support:
in WSIoT  heutistic PSO for CH delivery rate  ut, — cluster
routing 8.47% imbalance
energy ignored

7) Network-based Optimized with Software-based Methods

A hybrid approach to improving EE in IoT systems that integrates software-based
and network-based techniques is discussed in this subsection. While the software
methods adjust energy usage in real-time, network-based approaches optimize
communication overhead via energy-aware routing and EC. This combination
reduces energy waste, improves connectivity, extends device lifespan, and supports
sustainable smart grids. Key studies are summarized in Tables 7 and 8. dos Anjos
et al. [54] presented a Time and Energy Minimization Scheduler (TEMS), a
dynamic task scheduling algorithm with DVFS adaptation for hybrid IoT
computing environments. Guided by a detailed cost model like processing energy,
transmission energy, and device battery levels, TEMS facilitates balanced task
allocation across 10T devices, MEC servers, and cloud centres. Simulations show
energy savings of up to 51.6% and a task completion improvement of 86.6%,
addressing growing IoT latency and energy challenges. Similarly, Ansere et al. [55]
optimized the radio subsystem in large-scale 6G-enabled 10T networks through
the Joint Energy-Efficient Resource Allocation (JEERA) algorithm. It jointly
improves power allocation, sub-channel assignment, user selection, and active
remote radio units (RRUs). The NP-hard optimization problem is tackled using
fractional programming, Lagrangian decomposition, and the Kuhn—Munkres
(KM) algorithm. Simulations demonstrate EE improvements of 33—37%, making
JEERA a strong candidate for next-generation IoT systems. Furthermore,
Ciuffoletti [56] proposed a remote checkpointing mechanism to support deep-
sleep duty cycles in stateful IoT edge devices, preserving volatile memory across
sleep cycles. Their technology-agnostic model compares energy costs against light
sleep methods, identifying scenarios where checkpointing is more efficient.
Additionally, a secure transfer and recovery protocol reduces security risks using
dynamic identifiers. Hardware prototypes validate functionality and energy savings,
highlighting the method’s potential for constrained edge devices in low-duty-cycle,
data-intensive applications.

Equally, Baniata et al. [57] developed MIMO-HC, a clustering protocol for MIMO-
enabled IoT systems in 5G+ environments to tackle energy constraints, uneven
depletion, and hotspot issues. Their centralized CH selection and unequal
clustering strategy optimize cluster radii: smaller near the central station to reduce
collisions, and larger for distant clusters to minimize delay. A probabilistic multi-
hop routing system balances load among CHs, while interface selection enhances
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communication energy efficiency. Simulations show MIMO-HC outperforms UN-
LEACH, achieving 3x longer network lifetime, 40% lower CH energy use, better
load balancing, and improved stability. Hemanand et al. [58] also investigated
energy-efficient communication protocols for smart city IoT using NB-IoT over
LTE-M with an application server. Their framework assesses adaptive power
control, duty cycling, data aggregation, protocol optimization, and network
topology adjustments. Simulations indicate 15-25% energy savings, with adaptive
power control and network topology optimization having the highest impact. In
another study, Somula et al. [59] developed SWARAM, a CH selection protocol
integrating Euclidean distance-based clustering with the bio-inspired Osprey
Optimization Algorithm (OOA). Using a fitness function incorporating residual
energy and base station distance, SWARAM optimizes clustering to balance energy
use and prevent network energy holes. MATLAB simulations show it outperforms
EECHS-ARO, HSWO, and EECHIGWO, achieving 78% higher packet delivery
and 24% reduced energy consumption, demonstrating effectiveness in static WSN
deployments. Also, Shilpa et al. [60] suggested a hybrid clustering and routing
scheme for heterogeneous WSNs, combining dynamic/static clusteting (EEHCT)
with firefly optimization (FFO) for residual energy-aware clustering and route
selection. Simulations demonstrate improvements in network lifespan and packet
delivery, although inconsistencies in energy balance metrics and reporting reduce
clarity.

Table 7. Summary of network-based optimized software-based EE methods

L. EE System Implementatio  Evaluation o
Ref.  Objective Techniques Con};ponents n/ I1,&pproaches Metrics Results  Limitations
[54] Hybrid Real-time IoT devices, 3-layer Energy, 51.6%  Assumes
task workload- MEC, cloud offloading with ~ execution energy static
offloading aware DVES time savings; network
in IoT scheduling 86.6%  performanc
faster e
executio
n
[55] EEin Power/sub  6GRRUs,  JEERA EE, 33-37% Channel
dense 6G  channel/us  IoT radios algorithm; complexity  better assumption
IoT er/RRU convex EE, complexity;
optimizatio optimization reduced no real
n complex validation
ity
[56] Remote Softwate IoT edge RPi + Energy vs.  Lower  Network
checkpoin checkpointi  with volatile ESP8266 standby energy  overhead
ting for ng for memory prototype memory vs local  can limit
energy memory standby  gains
saving preservatio
n
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EE

System

Implementatio

Evaluation

Ref.  Objective Techniques Components n / Approaches Metrics Results  Limitations
[57] EE Unequal MIMO- CH selection,  Lifetime, 3X Simulation
routing clustering, enabled adaptive energy, lifetime, only;

for probabilisti ~ WSN topology delay, —40% scalability
MIMO ¢ multi-hop balance CH concerns
IoT in 5G  routing energy
[58] EE Duty NB-IoT, Active/sleep Energy use, 15-25%  Scalability
comms cycling, LTE-M, modes, duty cycle  lower not
for smart  power App server  protocol energy,  addressed;
city IoT control, optimization 25% via  partial
aggregation power  validation
control
[59] EE CH Bio- Sensor Two-phase: Lifetime, 24% Simulation
selection  inspired nodes, CHs, distance energy, energy only; static
for IoT- CH Sink clustering, PDR, cut; nodes; no
WSN selection by OOA CH overhead 78% secutity
residual election mote
energy & PDR
distance
[60] EE& Hybrid Heterogene LEACH-style  Lifetime, 90.27%  No real
longevity  clustering ous sensor clustering + energy, loss, lifetime  validation;
in with FFO network fuzzy logic delay improve metrics
HWSN5s routing ment unclear
[61] Compress Lossless Cloud-based MILP to Energy, 40% Ovethead
ion for data IoT sensing  minimize lifetime, energy not
longer compressio  system energy & traffic savings;  analyzed;
IoT n (S-LZW, latency 50% scalability
device life  S-LEC) longer  limited
lifetime

Al-Kadhim and Al-Raweshidy [61] suggested an adaptive data compression
scheme (ADCS) for cloud-based IoT networks to reduce transmitted data volume.
It dynamically selects between Sensor Lempel-Ziv-Welch (S-LZW) and Sequential
Lossless Entropy Compression (S-LEC) based on device processing capacity,
battery level, and compression energy cost. Optimized to reduce power
consumption in radio transmission and circuitry, simulations from a smart building
setup show up to 40% power savings and a 50% increase in device lifetime
compared to non-compression systems. Similarly, Memon et al. [62] presented the
Energy-Efficient Fuzzy Management (EEFM) system, combining fuzzy logic with
IoT-enabled VANETS to improve clustering efficiency. The routing algorithm
applies fuzzy clustering with multi-hop communication and reduced beacon
messaging. CH selection and packet rebroadcasting use fuzzy logic parameters like
node distance, residual energy, neighbour count, traffic density, and packet
redundancy. NS-2 simulations confirm superior energy use, lower delay, improved
packet delivery, reduced control overhead, and extended network lifetime
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compared to existing fuzzy-based approaches. In the same vein, Abdulzahra et al.
[63] introduced the Energy-Efficient Fuzzy-Based Unequal Clustering with Sleep
Scheduling (EFUCSS) protocol for IoT-based WSNs. Combining unequal
clustering for balanced energy distribution, fuzzy logic for CH selection, and sleep
scheduling to deactivate idle nodes, the protocol adapts to different node
distributions and base station distances. Simulations show EFUCSS outperforms
existing methods in energy efficiency and operational duration, making it a
practical solution for remote deployments.

Moreover, Merah et al. [64] proposed ESOM, an energy-efficient clustering
protocol for IoT networks integrating self-organizing maps (SOM) with dynamic
CH rotation. ESOM forms static clusters, initially selecting CHs based on
proximity to the winning neuron, then rotating CHs in later rounds using residual
energy and distance metrics to balance energy use and extend network lifespan.
Simulations show ESOM outperforms LEACH-SOM in energy efficiency, though
further research on multi-hop routing and collision avoidance could enhance
performance. Similarly, Arafat [65] developed DECR, a distributed energy-efficient
clustering and routing protocol for Wearable loT-enabled WBANs for
interference, user mobility, and battery constraints. It employs a two-hop
neighbour-based clustering strategy and a modified GWO (MGWO) algorithm for
CH selection and optimized routing. Additionally, an analytical model ensures
balanced energy use through cluster sizing. Simulations indicate superior energy
efficiency, network lifetime, and data reliability over MT-MAC and ALOC,
demonstrating its suitability for dynamic health monitoring. Liu et al. [66] also
presented EEGNBR, a routing protocol for UWSNs that eliminates node
localization by using a distance-vector approach for efficient sink node paths. In
the method, a concurrent relay selection mechanism enables multi-hop routing to
reduce delays and ensure reliable transmission under mobility and communication
challenges while conserving energy. Simulations show EEGNBR improves packet
delivery ratio and end-to-end delay, with energy efficiency on par or better than
existing protocols. Equally, Yao et al. [67] developed EERPMS, an energy-efficient
clustering protocol for WSNs in precision agriculture. It applies multi-threshold
image segmentation based on the Otsu algorithm, alongside a CH selection
method considering residual energy and proximity to optimal locations. These
techniques improve load distribution and network longevity. Simulations confirm
lower energy use and extended network lifetime compared to RLEACH,
CRPFCM, and FIGWO, reinforcing its viability for smart farming applications.

Mohamed et al. [68] presented LO-Dedup, a low-overhead inline deduplication
method to reduce energy use in Green IoT systems by eliminating redundant
wireless transmissions. Using hashed fingerprints, LO-Dedup detects duplicate
sensor data chunks and transmits only indices, reducing data size and power
consumption. Experiments with Arduino and Raspberry Pi confirm significant
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energy savings, especially for minimally varying sensor data, supporting real-time,
energy-constrained IoT applications. In the same vein, Dogra et al. [69] suggested
IMIMO-5G BEE, a routing and clustering protocol for IoT-enabled 5G WSNs
using MIMO technology. It integrates hybrid clustering: single-hop and multi-hop
communication, with CH selection via k-means clustering and a dynamic
competition radius. An adaptive transmission interface mechanism optimizes
energy utilization and quality of experience for various data types. Simulation
results show a 30% energy reduction, extended network lifetime, improved
coverage, and lower transmission delay compared to existing methods. Still on
clustering, Mir et al. [70] developed DCOPA, a metaheuristic-driven distributed
clustering protocol for IoT-based WSNs employing multiple-criteria decision-
making (MCDM) for CH selection, considering residual node energy and base
station distance. Nodes self-elect as CHs using a timer weighted by these criteria,
ensuring balanced energy use and optimized clustering radius. Simulations confirm
superior energy efficiency, extended network lifetime, and enhanced scalability
over LEACH and related protocols. In addition, Malik and Kushwah [71]
presented EES-IA, a hybrid cross-technology communication protocol for IoT
networks operating in the 2.4 GHz spectrum. ZigBee handles low-power control
and wake-up signalling, while Wi-Fi ensures reliable data transmission. The system
employs an Interference Avoidance (IA) algorithm based on packet error rate and
link quality. Omnet++ simulations show that EES-IA reduces energy use and
interference while improving throughput compared to Green loT Gateway.

Table 8. Summary of network-based optimized software-based EE methods

L. EE System Implementation Evaluation s .
Ref.  Objective Techniques C};mponents / AIl,)proaches Metrics Results Limitations
[62]  EE,lifetime Fuzzy CH  VANET with Density-based  Lifetime, Improved High
& QoS in selection, IoT rebroadcasting;  PDR, QoS lifetime, routing load
VANETS multi-hop fuzzy CH throughp  at high
routing selection ut, lower  speeds;
delay fuzzy rule
complexity;
highway-
only test
[63] Extend IoT Unequal Sensor nodes, Python sim; Lifetime, 39.6%— Assumes
lifetime via  clusters, CHs, fuzzy-based energy, 408.1% static,
clustering fuzzy CH,  gateway, BS  clustering balance lifetime homogeneo
duty cycling gain, less  us nodes;
redundan  ignores
cy interference
[64] EE& Static IoT nodes, LEACH-based  Energy, Better Static initial
lifetime via  clustering, CHs, BS sim, varied cluster energy clustering,
SOM dynamic distributions quality, use vs single hop
clustering CH lifetime LEACH-  only; no
SOM; deployment
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L. EE System Implementation Evaluation s
Ref.  Objective Techniques C}(r)mponents / AIl,)proaches Metrics Results Limitations
balanced,
stable
[65] EE Adaptive Wearable Compared to PDR, Higher Initial info
clustering &  clustering, ToT, CHs, MT-MAC & delay, PDR, overhead;
routing for  routing sink ALOC energy, lower no real
WBAN optimizatio overhead delay, deployment
n better
enetgy
use
[66] Routing for Adaptive UW sensor GUIDE routing Delay, Outperfor Relay
UWSNs routing, nodes, sinks (timeless PDR, ms DBR, selection
(no forwarding forwarding) energy, DVOR; complex;
localization) protection lifetime lower updating
delay under
mobility
[67] EE routing Residual- Sensor nodes, Energy model  Energy, 64.5% Static BS;
for energy- BS + CH selection  lifetime, energy may not
agriculture  aware load savings; scale well
WSNs clustering balance 57% computatio
longer nally
FDN
lifetime
[68] Reduce IoT Inline data ~ WSN, JSON Size, power 56B—8B; Small
transmissio  deduplicatio  gateway, deduplication 1.808W—  hardware
n energy n metadata prototype 1.793W scale; no
server multi-
sensor test
[69] Routing for MIMO- IoT nodes, NS-3 sim; Energy, 30%less  No security;
IoT w/ 5G  optimized BS, MIMO cluster + QoE delay, energy, interface
& MIMO clustering, devices routing QoE, better selection
energy- coverage lifetime complexity
aware
routing
[70]  Distributed Energy- Sensor nodes, Timer-based Energy, LND No real
EE balanced BS CH; optimized  lifetime, 1272 vs. validation;
clustering clustering scheduling CH 1055 timer
for WSN election (LEACH) complexity
; less
enetgy
used
[71]  EE Interferenc  IoT with Omnet++ sim  Energy, Lower Stationary
scheduling  e-aware, ZigBee/Wi- (30 nodes) PER, BER, energy, gateway; no
for multi- mixed i, gateways throughput  fewer PHY-layer
radio IoT proactive/t errors, tests
eactive more
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throughp
ut

8) Network-Software-based Optimized with Edge Computing and
Security

This subsection explores the intersection of software-based techniques, network
optimization, and EC to improve EE in IoT systems. While these smart algorithms
dynamically adjust power use, optimized networks reduce unnecessary
communication, and local data processing minimizes delays and cloud dependence,
with integrated security where needed. Tables 9 and 10 summarize the important
studies. Algarni et al. [72] suggested a two-level distributed EC architecture
addressing scalability, latency, and EE challenges in dense IoT networks.
Integrating fog computing and multi-access EC (MEC), allows dynamic task
offloading from resource-constrained devices to nearby fog nodes or MEC servers.
By using the Salp swarm optimizer (SSO) for resource allocation, it balances
computational and communication loads to reduce energy consumption and
latency. Experimental validation on a real IoT testbed confirms superior
performance over traditional IoT networks, though mobility effects remain a
challenge. Periasamy et al. [73] equally developed ERAM-EE, an energy-efficient
algorithm for resource allocation and management in fog-enabled IoT networks.
Fog computing decentralizes processing, reducing latency and enhancing
responsiveness. ERAM-EE tackles energy constraints, uneven traffic loads, and
unstable wireless connections. Using a channel gain matrix, it assigns IoT devices
to fog nodes (FNs) via resource blocks (RBs), optimizing task offloading and
energy use while avoiding congestion. Simulations confirm its superiority over OR-
EPA, RR-OPA, and EE-CN in energy savings and speed.

Feng et al. [74] presented a collaborative offloading strategy for IoT systems using
NOMA-enabled fog computing, employing mixed-integer nonlinear programming
(MINLP) to minimize total energy use while meeting delay constraints. Tasks are
loaded to pairs of fog nodes using NOMA for simultaneous transmission, reducing
the overall energy costs. The problem is split into fog node selection: handled via
a weighted bipartite graph and the Hungarian algorithm, and resource allocation,
addressed through convex reformulation with the MCTC algorithm. Simulations
show MCTC outperforms OMA, and NOMA without pairing, and full offloading,
achieving up to 85% energy savings. Similarly, Liu et al. [75] optimized EE in UAV-
based IoT networks lacking ground infrastructure, proposing a resource
optimization framework for multi-UAV systems where UAVs serve as aerial base
stations. The framework maximizes minimum EE by jointly optimizing
communication scheduling, power allocation, and flight paths. Due to the non-
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convex nature of the issue, it is decomposed into three sub-problems and solved
iteratively using the Dinkelbach method and subsequent convex approximation.
Simulations show improved EE, balanced UAV energy distribution, and enhanced
network sustainability and fairness. On the same note, Wu et al. [76] presented
DAEE, an online task offloading algorithm for delay-sensitive and compute-
intensive (DSCI) tasks in IIoT systems using MEC. They formulated the
offloading problem via perturbed Lyapunov optimization to minimize long-term
energy use while maintaining task deadlines. Additionally, virtual queue
management dynamically adjusts offloading decisions based on network state and
backlog data. Simulations demonstrate superior EE and latency control compared
to greedy energy-saving approaches, particularly under high workload and mobility
conditions.

Table 9. Summary of network-software-based methods optimized with EC &

security
L. EE System Implementation Evaluation c .
Ref.  Objective Techniques C};mponents / AI;proaches Metrics Results Limitations
[72]  Efficient  Hierarchical  IoT end Multi-tier Energy use, 19% Mobility
resource task devices, fog  optimization via  latency, energy effects not
allocation  offloading, nodes, MEC  SSO congestion  savings, fully studied
in dense dynamic servers reduction 86%
IoT energy use latency
reduction
[73] Maximize Energy-aware IoT devices,  Simulated Efficiency = Upto 18  Limited
EE in task Fog Nodes, evaluation vs. (bit/7), Mbit/] dynamic IoT
Fog-loT offloading, RBs, channel OR-EPA, RR- response efficiency  device
networks  resource matrix OPA, EE-CN time, gain; handling;
balancing utilization,  reduced memoty
complexity  processin  constraints
g time
[74] Minimize  Joint IoT task MCTC algorithm  Total 56.88%- Assumes
energy in  offloading nodes, fog for fog selection  energy use,  84.78% ideal
IoT via optimization  nodes, CPUs & resource latency, task lower CSI/SIC;
collaborati  using NOMA allocation size, energy vs  limited
ve & TDMA computatio  baseline scalability in
offloading n cycles dynamic
networks
[75] Maximize Joint Multi-UAVs  Successive UAV Improved Assumes
UAV EE  communicati as base convex energy use, fairness & ideal LoS;
via on scheduling  stations, approximation fairness, EE lacks real-
trajectory & UAV ground IoT throughput wortld tests;
& trajectory nodes computationa
scheduling  planning lly complex
optimizati
on
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[76]  Optimize  Dynamic IIoT devices, Mobility-aware Energy, Outperfor  Single edge
MEC scheduling, witeless links, optimization queue ms greedy  server
energy use network- MEC servers  framework stability, schemes;  assumed; no
for delay-  aware delay adaptive  real-world
sensitive offloading guarantees  to validation
TIoT tasks workload

changes

[77]  Improve  DVFES, Energy Java simulation Energy use, 379.5] vs  Less optimal
EE and energy-awate  model, on IBM 213 latency, 427]+ for small
security in  scheduling, job/VM (2200 VMs, 40 throughput, energy; packets;
MFBC for EC, scheduling, servers) attack 0.165s vs  blockchain
TIoT lightweight blockchain detection 0.172s+ overhead

algorithms latency

Beyond software and network optimization, security and reliability are also
integrated to enhance EE. Key studies in this domain are summarized in Table 9.
Razaque et al. [77] proposed EESH, a hybrid algorithm for mobile fog-based cloud
(MFBC) IoT systems, combining voltage scaling for energy savings with
blockchain-based malicious data detection (MDD). The algorithm utilizes energy
estimation, task scheduling, and parallel processing to optimize resource
utilization. Simulations under varied workloads show improved EE, latency, and
security by effectively identifying malicious data blocks. Accordingly, Salim et al.
[78] developed SEEDGT, a secure and energy-efficient data-gathering technique
for IoT-based WSNs. It integrates trust-based clustering, homomorphic
encryption for secure aggregation, and a modified compressive sensing (CS)
method to minimize data volume and energy use. Operating in three phases: cluster
formation, network operation, and reconfiguration, it strengthens security while
adaptive compression reduces communication overhead. Simulations demonstrate
increased network lifetime and EE, along with strong security protections.
Likewise, Philip and Singh [79] developed TPSS, an adaptive LoRaWAN-based
communication protocol for dynamic water monitoring applications. It extends
battery life by adjusting transmit power and spreading factor based on node
distance. Their study also includes carbon footprint analysis, validated through
analytical modelling and real-world testing. Results indicate that 62% of energy
savings near gateways and an 8.6 kg per node reduction in carbon emissions while
maintaining communication reliability.

Sankaran and Kim [80] proposed a secure, energy-efficient data transmission
framework for IloT, managing complex, large-scale sensor data. It combines
multi-scale grasshopper optimization (GOA) and robust multi-cascaded CNN
(RMC-CNN) for anomaly detection, it employs a dynamic honeypot-based
encryption algorithm (DHEA) for data security and blockchain for decentralized
key management. Experiments confirm superior accuracy, throughput, latency,
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and attack detection compared to existing methods. Nagaraju et al. [81] equally
suggested a unified protocol for heterogeneous IoT-enabled WSNSs, tackling EE,
security, and data management. It combines secure multipath routing (MLRP),
energy optimization with load balancing (H-TEEN), and enhanced data storage
(U-DSP). NS-2 simulations show superior performance over LEACH, CCBRP,
and PEGASIS, achieving a 25% reduction in end-to-end delay, 20% higher
throughput, and a 35% increase in network lifetime, energy use, and storage
capacity. In another study, Sharma et al. [82] proposed MHSEER, a meta-heuristic
secure and energy-efficient routing protocol for WSNs in IIoT settings. It
combines meta-heuristic routing with lightweight encryption using Counter-
Encryption Mode (CEM). With this, routing decisions consider hop count,
connection integrity, and residual energy, helping to manage node depletion and
maintain stable communication. MATLAB simulations demonstrate 95.81%
throughput, a 5.12% packet drop ratio, and low energy utilization, showing
effective encryption and route maintenance.

Asaithambi et al. [83] tackled high energy use, single points of failure, and security
gaps in traditional IIoT deployments. Their approach integrates decentralized
blockchain for identity and data management with SDN for centralized control
and traffic optimization, improving security and network efficiency. An energy-
aware CH selection algorithm extends the device lifespan using residual energy
metrics. Simulated using Mininet-WiFi and Vechain blockchain, results show
enhanced throughput, reduced latency, and lower energy use compared to existing
SDN models. Similarly, Swathi et al. [84] developed a unified system for EE and
fault tolerance in IoT-enabled WSNSs. Integrating the ANFIS Reptile Optimization
Algorithm (AROA) for inter-cluster routing and Tuned Supervision-Based Fault
Diagnosis (TSFD) for fault detection, it optimizes routing via a hybrid AROA-
based Accessibility Index (AI) considering residual energy, response time, and
node activity. MATLAB simulations show a 72% energy reduction, 52% extended
network lifetime, and 97% fault detection accuracy.

Table 10. Summary of network-software-based methods Optimized with EC &

security
.. EE System Implementation Evaluation S
Ref.  Objective Techniques C};mponents / AI;proaches Metrics Results Limitations
[78] Secute & EE  Trust-based  IoT sensors, SEEDGT Network Extended No real-
data gathering  clustering, CHs, BS simulation with lifetime, lifetime with ~ world
in IoT WSNs  encrypted clustering energy per secure validation;
aggregation, round, alive  aggregation, trust-weight
adaptive nodes reduced tuning
compression energy complexity
[79] TPSS for Adaptive LoRaWAN Field tests in Energy 62% energy  Limited EH
dynamic LoRa  transmit end-nodes, reservoir savings, savings near  integration;
power & reliability, gateway; 38%
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nodes in water  spreading gateway, water carbon far; carbon environment
monitoring factor sensors footprint reduced 8.6 sensitivity

kg/node

[80] EE & secute  Energy- IIoT sensors, GOA Accuracy, RMC-CNN  Limited real-
data aware optimization optimization, precision, 99.2% time
transmission optimization, module, RMC-CNN recall, accuracy; validation;
in IToT anomaly blockchain key  attack detection,  throughput, encryption encryption

detection, storage dynamic latency improves complexity
secure encryption security & issues
encryption Transmission

[81]  Secure EE Secure Heterogeneous Multipath Delay, 25% delay Protocol
routing for routing, sensors, BS, routing, Hybrid-  throughput,  reduction; complexity;
heterogeneous  hybrid ToT sources TEEN clustering, energy, 20% no real-
WSNs clustering, U-DSP storage lifetime, throughput wotld

distributed storage gain; 35% validation
storage lifetime
extension

[82] EE & secure Optimized IIoT sensor MATLAB Throughput, 95.81% Limited real-
routing for routing, nodes, BS, simulation of PDR, delay,  throughput; wotld
IIoT WSNs lightweight encrypted routing & energy, 5.12% PDR;  validation;

encryption routing Encryption faulty paths  0.10 ms delay ~compatibility
modules concerns

[84] EE inter- Al-based Cluster leaders, MATLAB sim Energy 72% energy  Strong
cluster routing  adaptive members, sink, (1000 nodes) intake, intake integration;
& fault routing & fault modules lifetime, reduction; lacks real
management  fault stability, 52% lifetime  deployment

tolerance forwarding extension;
time, 97% fault
accutacy detection

[83] EE & secure CH selection  SDN Mininet-WiFi Energy use,  Reduced Simulation-
SDN for IIoT  via SDN controllers, emulator; latency, energy, based;
networks energy IoT devices, Vechain throughput  latency; blockchain

optimization  blockchain blockchain improved overhead
ledger throughput untested
9) Network-software-based Methods with DSEM

This hybrid technique integrates network optimization with DSEM to enhance EE
by aligning consumption with real-time grid conditions while ensuring reliable,
low-latency communication. DSEM reduces peak demand and supports adaptive
energy use, while network optimization minimizes communication overhead for
efficient data exchange. Table 11 provides a summary of the important studies. Ali
etal. [85] developed REEFSM, a reliable and energy-efficient framework with sink
mobility for UWSNs to deal with energy constraints and unreliable data
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transmission. The system utilizes a segmented network architecture with
strategically placed mobile sinks, reducing redundant data forwarding, and
optimizing sensor activity and communication. Additionally, adaptive duty cycling,
neighbour discovery, and intelligent packet forwarding improve efficiency.
Simulations show REEFSM outperforms EERBCR and DEADS, reducing energy
use by up to 43%, improving data reliability by 35%, and ensuring zero dead nodes
with minimal packet loss. Equally, Yarinezhad et al. [86] proposed RTG, a routing
protocol for green 10T networks using mobile sinks to improve EE, extend
network lifetime, and reduce end-to-end delay. It focuses on low sensor node
energy, hot-spot issues, and routing complexities from sink mobility. Accordingly,
RTG divides the network into an inner zone using tree-based routing for fast
updates and EE, and an outer zone with improved geographic routing for balanced
energy use and prevent loops. Simulations confirm superior lifetime, throughput,
and lower delay compared to existing protocols.

DSEM, a software-based technique, is integrated with Al-driven methods to
dynamically adjust power usage, predict demand fluctuations, and optimize energy
distribution. Table 10 summarizes key studies. Azizi et al. [87] addressed
scheduling challenges for delay-sensitive, heterogeneous IoT tasks in fog
computing environments with limited resources. They proposed two semi-greedy
heuristic algorithms, Priority-aware Semi-Greedy (PSG) and PSG with Multistart
(PSG-M), which prioritize tasks based on deadlines while estimating energy
consumption to guide allocation. These methods minimize deadline violations
without increasing energy use. Simulations confirm superior task completion and
reduced violation times over existing approaches, showcasing the combined
benefits of software-based energy management, EC, and DSEM. Hazra et al. [88]
proposed EaDO, an energy-aware data offloading technique for IIoT sensor
networks to deal with challenges in handling delay-sensitive emergency data. It
combines fog computing with two strategies: Emergency-aware Scheduling (EaS)
using a multilevel feedback queue for prioritization, and Energy-aware Offloading
(EaO) utilizing Hall’s theorem for optimal task allocation. The system reduces total
energy use, queuing delays, and CO, emissions more effectively than existing
methods while maintaining fair energy distribution through simulations.

Table 11. Summary of DSEM with Network-based and Software-based methods

EE System Implementation Evaluation

Ref.  Objective Techniques Components / Approaches Metrics Results Limitations

[85]  Address Mobile sink ~ Underwater ~ Horizontal Energy 43% Discrepancies
energy deployment,  sensor nodes, mobile sink consumption, lower in packet
constraints  duty cycling,  mobile sink movement; PDR, packet  energy drop data;
and wake/sleep regions optimized packet  drop rate, use; 35%  limited sink
unteliable scheduling forwarding network higher mobility; no
data in lifetime data real-world
UWSNss reliability;  validation
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zero dead
nodes
[86]  Energy- Energy IoT sensor Partitioning into  Network RTG Limited to
efficient balancing via  nodes, mobile InSection & lifetime, achieved  single mobile
routing to routing; sink, routing  OutSection; delay, longest sink;
prolong mobile sink mechanisms "Improved throughput, lifetime, simulation-
ToT load Geographic" and  energy highest only
network distribution tree-based consumption  throughp  evaluation
lifetime routing. ut, lowest
with mobile delay
sinks
[87]  Minimize Priority- IoT devices, = MINLP Deadline 97.6% Assumes
ToT task awatre fog nodes, modelling and satisfaction, reduction  single task
energy and  scheduling cloud heuristic violation in per fog node;
meet balancing infrastructure  implementations  time, energy  deadline lacks fault
deadlines in  energy and use violation;  tolerance
fog deadlines optimized
computing energy
use
[88] Minimize Fog Industrial IocT Hall’s theorem- Queueing 23-30% Static
energy and  computing Sensors, based matching;  delay, energy  lower task/device
latency in offloading fog/cloud queueing use, CO2 energy assumptions;
industrial with nodes optimization emissions use; complex real-
IoT data emergency improved  time
offloading  task fairness deployment
prioritization and CO2
reduction

10) Hardware-based Methods Optimized with REI, Software, Network
and AI Ap

This section presents another hybrid EE approach that integrates REI with energy-
efficient hardware to build sustainable, resilient IoT energy systems. REI considers
environmental impacts such as carbon emissions and fossil fuel dependency using
solar, wind, and other clean sources. Hardware-based methods like low-power
microcontrollers and EH sensors, minimize energy use, extend device lifespan, and
support smart grids and IoT applications. Tables 12 and 13 summarize the
important studies. Hnatiuc et al. [89] presented an autonomous solar-powered loT
system with LoRaWAN for vineyard monitoring. The low-cost setup combines
renewable EH with hardware and software optimizations. Experimental results
show that reducing GPS update frequency and enabling idle modes lowers energy
use. Field tests confirm six days of autonomy without solar input, demonstrating
its suitability for off-grid deployments. Similarly, Wang et al. [90] designed a low-
power, battery-less sensor for Agri-IoT applications, integrating on-chip sensor
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fusion, RF EH, and event-driven BLE communication. Its SCMSS and DAFE
circuits sense temperature, humidity, and soil moisture with just 4.8 pW power.
Manufactured in 65-nm CMOS technology, the sensor eliminates battery
replacements, reducing environmental impact. Simulations demonstrate reliable
accuracy, making it viable for scalable smart agriculture. Shukla et al. [91] equally
developed a unified framework combining processing-in-memory (PIM) with
kinetic EH (KEH) for energy-efficient ML in IoT and edge devices. LUT-based
in-memory computation minimizes data movement, while piezoelectric KEH
provides intermittent power. Experimental results show that 8-bit fixed-point
inference maintains accuracy while enhancing EE. Accordingly, Haroun et al. [98]
designed a battery-less wireless sensor transmission unit (WSTx) powered by
indoor solar EH. Using polycrystalline photovoltaic cells, MPPT-based PMU, and
LoRa, the system enables efficient low-power operation. Firmware optimizations,
including deep sleep cycles and sensor power management, extend operation under
minimal lighting. However, supercapacitor self-discharge and limited sensor
compatibility may affect adaptability.

Table 12. Summary of hardware-based optimisation with REI, Software,
network, and Al

L EE System Implementation Evaluation N
Ref.  Objective Techniques C};mponents / AI;proaches Metrics Results Limitations
[89]  Autonomous Hardware Solar panel, Real-world field ~ Power 6.83 days Single
solar-powered  (solar panel, PWM deployment consumption, autonomy; application
ToT battery, controller, autonomy, software case; lacks
deploymentin ~ PWM battery, connectivity ~ optimization adaptive load
agriculture controller);  LoRaWAN reliability improved response
software nodes, Arduino efficiency
optimization
[90]  Low-power RF EH; Capacitive 65-nm CMOS Power use, Ultra-low Short BLE
battery-less IoT  event-driven  sensors, shared fabrication; BLE  accuracy, power (4.8 range (12 m);
sensot for BLE DAFE, BLE, at 2.4 GHz BLE TX uWw); dependency on
agriculture transmission  RI harvester range, EH battery-less 2.4 GHz RF
performance  operation; soutces
accurate
sensing
[91]  Reduce ML PIM, KEH  LUT-based Fixed-point Energy 1.9 mW No hardwate
energy use on PIM cores, computation; consumption, KEHin5s; prototype;
IoT/edge piezoelectric CNN packet rate, high energy
devices KEH devices  benchmarks cluster energy inference depends on
deviation efficiency motion
[92]  Energy- Energy- Heterogeneous  Hybrid offline- Energy 29% energy ~ Computational
efficient aware sensor nodes, online threshold;  savings, savings, 68% overhead;
protocol for routing, zone MSWE heuristic  lifetime, data  lifetime increased delay
large-scale IoT  hardware aggregators, optimization transmission,  extension, in large
WSNs EH, EH relay nodes complexity improved networks
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Ref. Objective gE . System Implementation Evah.latlon Results Limitations
echniques Components / Approaches Metrics
computation load
filtering balancing
[93]  Secure energy-  Battery- 10T sensors, Monte Catrlo Secrecy Higher Latency-
efficient aware soutce  relays, simulation; throughput, secrecy & security trade-
communication  selection, destination Markov analysis  energy failure  efficiency vs.  off; complex
in IoT EH, secure  node rate, stability  traditional node
jamming methods interactions

In terms of hardware-based methods and network optimization, while low-power
processors and optimized sensors reduce device energy use, network optimization
minimizes latency, redundant communication, and transmission overhead using
energy-aware routing. Table 11 also provides a summary of key studies. Abdul-
Qawy et al. [92] proposed TESEES, a reactive, energy-efficient protocol for large-
scale, heterogeneous IoT-based WSNs. Building on SEES, it introduces a zone-
based architecture with event-driven data reporting and transmission thresholds to
reduce redundancy and conserve node energy. By joining a threshold-based
minimum-cost cross-layer transmission (TMCCT) algorithm and energy-
harvesting relay nodes, TESEES improves scalability and load balancing.
Simulations confirm 29% energy savings, a 68% increase in network lifetime, and
enhanced data handling, making it suitable for dense environments. Similatly,
Gouissem et al. [93] focused secure and energy-efficient communication scheme
for cooperative IoT networks, incorporating physical layer security, artificial
jamming, and energy harvesting (EH). A battery-aware source selection
mechanism optimizes energy use among relay nodes, while amplify-and-forward
(AF) transmission with jamming protects against eavesdropping and supports EH
at sensor nodes. Monte Carlo simulations and Markov analysis demonstrate
improvements in secrecy capacity, EE, and system stability as more sources
cooperate.

Furthermore, REI is combined with software-driven and network optimization
methods to enhance EE, connectivity, and sustainability in IoT-driven energy
systems. Table 11 provides a summary of key studies. Islam et al. [94] developed a
framework for deep neural network (DNN) inference on EH devices to deal with
power and computational constraints. It utilizes Low Energy Adaptation (LEA) to
modify model complexity based on available power and Checkpoint-Free
Intermittent (CLI) inference to preserve computational state across power failures
with minimal energy use. A consistency-aware execution mechanism ensures
correctness under intermittent conditions. Experiments on a low-power
microcontroller confirm improved memory efficiency and reliable DNN inference
where traditional methods fail. Kang and Lim [95] also proposed the Energy
Intelligence Platform Module (EIPM) to mitigate solar-powered system challenges,
particularly unpredictable ambient energy, and capacitor depletion. The lightweight
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software-hardware system manages EH in resource-constrained 10T devices via
energy prediction, task scheduling, and state checkpoints. A two-state Markov
model forecasts energy availability, dynamically adjusting task execution and
selectively saving device states to reduce information loss. Simulations validate its
effectiveness.

In another study, hybrid access points (H-APs) with renewable energy sources are
suggested [96]. Cao et al. [96] introduced a joint optimization framework for
improving EE in simultaneous wireless information and power transfer (SWIPT)-
enabled IoT networks. To deal with intermittent power at H-APs and terminals,
they devise a non-linear mixed-integer problem utilizing power allocation, time-
switching, and energy cooperation among H-APs. Additionally, a two-stage
solution applies iterative methods for power and time-switching and a many-to-
many matching algorithm for energy sharing. Simulations confirm EE gains and
reduced consumption, especially in dense environments, outperforming baseline
and PSO-based models. Similarly, Bharathi et al. [97] developed EMEECP-10T,
an enhanced multitier energy-efficient clustering protocol for IoT-based WSNs,
targeting EE, security, and network lifespan. It integrates a three-layer clustering
architecture with wireless EH and a security mechanism for detecting rogue nodes.
Clustering and routing decisions leverage PSO, while transmission power control
and a lightweight encryption scheme (TBSA) minimize energy use. Simulations
confirm a 37% increase in network lifespan, a 21% improvement in energy
efficiency, and enhanced data throughput compared to existing techniques.

Table 13. Summary of hardware-based optimisation with REI, Software,
network, and Al

L EE System Implementation Evaluation TN
Ref  Objective Techniques C};mponents / AI;proaches Metrics Results Limitations
[94] Efficient Hardware MSP430 Ultra-low-power  Inference 1.65% lower Limited
DNN energy MCU, custom MCU latency, latency; scalability;
inference adaptation; DNNs, non-  implementation;  memory memory- small DNN
on energy-  intermittent volatile memory- efficiency, efficient models only
harvesting  software FRAM optimized DNNs  inference execution
devices execution memory success rate
[95] Mitigate Predictive Solar-powered Markov-based Task 93.4% fewer  Increased
power scheduling, witeless scheduling and execution depletion execution
depletion in  checkpointing, sensor node task execution rate, power events; 15.6X  latency;
EH-IoT capacitor optimization depletion uptime depends on
devices voltage events, increase prediction
monitoring uptime accuracy
[96] Maximize SWIPT- H-APs, IoT Dinkelbach Energy Outperforms ~ Assumes
energy enabled RF terminals, alternating efficiency, PSO & rate- perfect CSI;
efficiency harvesting; smart grid iteration; many- consumption, maximization; relies on
with smart grid to-many convergence  enables smart grid;
SWIPT & time energy reuse  lacks
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EE

System

Implementation

Evaluation

Ref  Objective Techniques Components / Approaches Metrics Results Limitations
energy energy cooperation economic
cooperation  cooperation matching trading

model

[97] Enhance Clustering, Three-layer PSO for Network 35% longer Ignores
energy power control, cluster WSN clusteting/path lifetime, lifetime; 21%  node
efficiency &  wireless EH, with security ~ optimization; throughput, energy mobility;
security in encryption integration TBSA encryption latency, reduction complex
ToT WSNss packet loss multi-tier

framework

[98]  Develop Solar Polycrystalline MPPT power Power 85.7% Limited
ultra-low- hatvesting; PV, MCU, extraction; sensor  harvested, efficiency; ~6  indoor
power low-power LoRa module  sleep cycles throughput, hours hatrvested
WSN firmware energy per continuous power;
device inference, operation firmware

delay, complexity
accutacy
3.2. Discussion And Future Directions

3.2.1. Discussion

EE is a critical factor in the development of IoT and WSNs since it extends
network lifetime and influences operational costs and system reliability. This study
analysed various EE techniques such as Al-based optimization, system-level
strategies, clustering routing, secure transmission protocols, and hardware
innovations. This is summarized in Tables 2 to 13. The findings are presented
methodologically, performance-wise, and comparatively showing the important
trade-offs and future research directions for optimising energy use in loT
ecosystems. We considered publications from 2021 to 2025 and presented the
summary of the years in terms of journals and conference papers. As shown in
Figure 4, research on energy-efficient IoT systems topped in 2022, particularly in
journals indicating increased investment and technological progress. Journal
output remains stable while conference publications fluctuated, peaking in 2023
and 2024 before a slight decline. The trends suggest a shift towards more in-depth
studies in journals, with timely insights from conferences. During this period,
advances in Al-based optimization, edge, and fog computing, and EH-supported
sustainable IoT deployments. In addition, secure clustering, efficient routing, and
blockchain-based security improved system trust and resilience. By 2025, although
ongoing, research has turned to refining the methods of integrating hardware
efficiency, software intelligence and network optimization to allow scalable,
sustainable IoT infrastructures.
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Publications by Type and Year
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Figure 4. Publication trends

In terms of the findings, our analysis shows a growing trend towards integrated,
multi-objective routing and cross-layer energy optimizations, with significant
progress in minimizing energy use, network lifetime and improving security
mechanisms. Figure 5 shows energy savings across randomly selected studies due
to the proposed EE techniques. In particular, the analysis reveals that Al-based
optimization enhances energy management in IoT and WSN through dynamic
load forecasting, autonomous scheduling, and adaptive routing. Studies such as
[22] and [23] employed multi-agent RL and transformer-based algorithms,
achieving 40—60% energy savings in urban environments. Similarly, [20] utilized
MDP smart routing but faced computational overhead in real-world deployments.
Energy-aware RL protocols like Q-learning, explored in [24], [25], and [20],
improved network lifetime and reduced packet loss in constrained IIoT and WSN
settings. UAV-assisted decision-making using FL, as seen in [39] and [58], cut
energy use by 25% while enhancing efficiency. Fuzzy logic and ANN-based
optimization, adopted in [74] and [79], further reduced costs across various 1oT
applications. However, Al-based methods introduce computational overhead,
rendering DRL impractical for low-power 10T due to processing demands. RL-
based scheduling in [53] and [40] increases computational costs, while DRL
approaches in [22] and [23] require significant memory and power. Simple rule-
based methods, including those in [47] and [48], are less adaptive but effective in
stable conditions. Despite advancements, high computational requirements,
extensive training data reliance, and scalability challenges remain key barriers to
Al-driven energy optimization in practice.
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Energy Use Savings Reported by Various Studies
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Figure 5. Energy savings across studies

System-level energy optimization in IoT relies on multi-layer techniques integrating
offloading, compression, and security via blockchain to minimize energy use.
Hierarchical offloading frameworks, such as those in [54] and [72], combine fog
computing, MEC, and DVFS to dynamically balance computing loads, achieving
19-51.6% energy savings. These methods perform well in static environments but
face challenges in dynamic networks. Data compression techniques in [18] and [21]
improve transmission efficiency, with Huffman coding and lossless compression
reducing energy costs by 77%. Edge-based federated learning (FL) [39], [40]
enhances decentralized resource allocation, cutting transmission energy by 25%.
Studies [19] and [20] integrate predictive security, blockchain, and hardware-aware
controls, improving energy efficiency (EE) by ~29%. However, blockchain
encryption adds processing costs and hierarchical frameworks require fine-tuning
for optimal performance. While cross-layer optimizations enhance system stability,
they introduce computational overhead and require careful deployment.

Moreover, communication-level strategies extend node lifetimes in IoT-based
WSNs and underwater deployments [85], [86]. Duty cycling, transmit power
control, and adaptive modulation are widely used, alongside clustering-based
routing techniques that minimize redundant transmissions and optimize resources
[86], [97]. Studies such as [32], [33], [52], [74], [76], employ metaheuristic and bio-
inspired clustering algorithms, including GWO, MOA, FFO, DA, SSO, PSO, etc.
to improve CH selection and EE, achieving a +333.51% stability improvement.
Hybrid clustering frameworks in [53] and [59] combine fuzzy clustering with PSO
to boost packet delivery but require scalability improvements. Self-organizing
clustering mechanisms in [64] and [65] enhance packet delivery and reduce routing
overhead. While these techniques outperform traditional methods like LEACH

1516 | A Comprebensive Review of Energy Optimization Technigues in the Internet of .....



Journal of Information Systems and Informatics
Vol. 7, No. 2, June 2025

p-ISSN: 2656-5935  http://journal-isi.org/index.php /isi e-ISSN: 2656-4882

and PEGASIS, their reliance on static initial clustering poses challenges in mobile
network setups.

In dynamic IoT environments like LoRaWAN and UWSNSs, algorithms such as
TPSS and REEFSM demonstrate that transmission control, mobility, and adaptive
routing can achieve over 40% energy savings [85], [79]. However, packet drop
variability and constrained node mobility remain underexplored. Multi-threshold
CH selection routing algorithms like MDP, developed in [66] and [67], improve
energy efficiency in precision agriculture and UWSNSs, achieving 43% energy
savings with reliable performance. In latency-sensitive 1IoT applications, hybrid
schemes integrating GOA with anomaly detection and encryption enhance
accuracy, throughput, and EE [80]. Despite benefits, bio-inspired models require
extensive tuning and adaptive clustering often incurs high processing costs,
limiting deployment in low-power IoT networks. Future directions may involve
ML-based cluster selection combined with lightweight heuristic routing.

Balancing data security with EE is another critical challenge. Blockchain-based
security models, such as [83], integrate SDN and decentralized trust mechanisms
to improve EE by 35% while enhancing latency and efficiency. Studies like [77],
[78], and [81] use homomorphic encryption and multipath secure routing to
prevent data leakage while minimizing energy waste, though encryption overhead
increases costs. Adaptive cryptographic compression techniques [82], [51] improve
energy use by 30% but offer weaker encryption compared to blockchain-based
methods. Blockchain models provide stronger security but at higher energy costs,
whereas lightweight cryptographic methods save power but require optimization
for sensitive contexts.

Battery-less designs and EH offer sustained IoT operation without traditional
energy sources. Studies in [89], [90], [96], and [98] explore solar, RF, and KEH for
agricultural and sensor applications, leveraging low-power hardware (e.g., MSP430
microcontrollers, custom CMOS circuits) and lightweight software (e.g., Arduino,
event-driven firmware). Solar-powered LoRa-based systems [89], [95] demonstrate
week-long autonomy but require adaptability to environmental conditions.
Battery-less 1oT sensors [90], [98] operate under minimal power budgets but face
limited communication range. SWIPT explored in [96] and [93], enables energy
reuse in smart grids with up to 30% network-wide energy savings. Energy-aware
DNN inference methods like checkpoint-less intermittent inference [94], [91]
support intelligent sensing but rely on ideal infrastructure conditions, limiting real-
world applications. While EH reduces dependency on conventional power
sources, challenges remain in adapting to real-world variability, particularly in low-
light indoor settings and limited signal range, necessitating hardware-level signal-
boosting strategies.
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Despite methodological depth, a common limitation across studies is the lack of
real-world validation. Many solutions are tested in simulated environments like
MATLAB, NS-2, NS-3, OMNeT++, and Mininet-WiFi, with only a fraction
deployed in field applications such as LoRaWAN for agriculture, water monitoring,
and solar-powered nodes [79], [89], [98]. Several models assume idealized
conditions, perfect CSI, stable energy profiles, or static network topologies—
which may not generalize well to real deployments [96], [74], [75]. The studies
embrace diverse system architectures, including heterogeneous sensor nodes, fog
and MEC servers [17],[49], cloud infrastructure [54][61], mobile sinks, UAV base
stations [39],[54], smart grids, and SDN controllers[26][83]. Moreover, energy
consumption metrics remain critical for assessing IoT and wireless system
efficiency, guiding improvements in communication protocols and routing.
Frequently used metrics include energy use/savings, network lifetime, latency, and
throughput, while some studies incorporate domain-specific indicators like secrecy
throughput [93], carbon footprint [79], and device uptime [95], reflecting the
interdisciplinary nature of energy-aware system design. However, multi-
dimensional trade-off analyses, balancing energy, latency, reliability, and security,
are rarely explored, but essential for deploying EE solutions in critical applications.
Table 14 and Figure 7 summarize the metrics and their frequency.

Table 14. Summary of evaluation metrics

Metric Specific Metrics Description

EE/consumption Energy use, energy Central metric across almost
savings, energy all studies, assessing how
consumption, energy much energy is saved or
efficiency, power use, consumed

power consumption,
energy intake, energy

harvested
Network Network lifetime, device ~ Important for wireless sensor
lifetime/device uptime, lifetime networks, IoT nodes, and EH
uptime extension, stability,
residual energy, load
balancing
Latency / Delay ~ Latency, delay, inference  Relevant in fog computing,
latency, task deadline task scheduling, and real-time
violation systems
Throughput/data  Throughput, data Measures the quality of data
rate transmission rate, PDR, communication and
successful inference rate  processing efficiency
Packet PDR, packet loss rate, Assesses reliability of wireless
delivery/loss packet drop rate and sensor network

communication
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Metric Specific Metrics Description
Computational Computational Important in algorithmic or
metrics complexity, overhead, protocol optimization studies

memory efficiency,
convergence time

Security metrics

Attack detection
accuracy, encryption
accuracy, secrecy
throughput, trust
management, fault
detection accuracy

Often combined with energy
metrics in secure IoT or IIoT
studies.

Power Power harvested, power  Key in energy harvesting and

management / depletion events, energy  battery-less device studies

Harvesting harvesting efficiency

QoS QoS metrics: throughput, Used in network and service-
delay, reliability & QoE level evaluations

Communication ~ BLE transmission range,  Relevant in hardware

range / Reliability ~connectivity reliability prototyping and wireless

communication

Fairness/load Fairness, load balancing, = Measures distribution of

balancing cluster efficiency workload or energy
consumption

Others Carbon footprint, Miscellaneous metrics

forwarding time, accuracy
(sensor data, ML
models), fault tolerance,
network stability

addressing environmental
impact, system robustness, or
model accuracy

As shown in Table 14, energy consumption is a major concern, lowering it directly
extends the network lifetime, offering a common way to evaluate effectiveness.
Still, energy savings should not come at the expense of core functions. Throughput
and PDR remain essential for reliable data transmission. Delay and latency also
matter, especially in time-sensitive settings, although methods like duty cycle often
increase them. In addition, load balancing and residual energy demonstrate the
need to spread energy use evenly, aiding in early node failure avoidance and
ensuring network stability. Likewise, security features, when included, add
complexity and extra energy demands that should be carefully managed.

In summary, while core energy-saving methods like DVES, duty cycle, clustering
and routing remain widely used, recent research is shifting towards multi-objective
optimization, Al-driven control, and cross-layer designs. Al-based energy
optimization now supports network efficiency, security, clustering, and scheduling,
signalling a strong convergence between Al and 10T energy management. Hybrid
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clustering and multi-layer routing are emerging as the leading strategies, especially
in IIoT and smart home settings. Also, blockchain and FL are gaining momentum
as secure, low-power solutions, supporting data integrity with manageable
computational demands. Increasingly, hardware-software co-design combined
with context-aware strategies is seen as essential for scalable IoT systems.

Frequency of Evaluation Metrics in loT EE Studies

Energy use / consumption
Network lifetime / uptime
Latency / delay

Throughput / data rate

Packet delivery ratio / loss
Computational complexity / overhead
Security-related metrics

Power harvesting / depletion
Load balancing / fairness

QoS / QoE

Reliability / connectivity
Accuracy

Fault tolerance / detection
Carbon footprint / environmental

Others

F T T T

0 10 20 30 40 50 60
Frequency (Number of Studies)

Figure 7. Frequency of evaluation metrics used across studies.
3.2.2. Possible Research Directions

Based on the review conducted in this study, some of the notable or promising
research directions to advance EE optimization in IoT and WSNs are as follows:
With the advent of privacy-aware IoT deployments, FL has become a decentralized
approach to energy-efficient enhancement [40], [28]. There is a need for future
research to investigate adaptive FL frameworks that integrate EH while ensuring
data security and low-power communication across edge devices. Quantum-
inspired algorithms, such as QIGWO, have shown enhanced routing stability and
search efficiency [30]. Future studies could benefit from refining quantum-
enhanced heuristic models, examining their potential to reduce energy overhead
and latency in high-density IoT settings. Another important aspect is the
integration of blockchain technology for IoT network sustainability. Across the
studies that focused on blockchain, the technology has proven effective in secure
IoT authentication and decentralized identity management [49], [77], [83], but
reported significant computational overheads. Future research could investigate
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lightweight blockchain models, ensuring high energy efficiency with minimal
computational costs, particularly in IIoT and smart cities.

Furthermore, Al-powered multi-objective routing for edge-based IoT is another
aspect to consider for further investigation. This is because, as EC replaces
traditional cloud systems, several studies have explored Al-driven multi-objective
clustering and routing techniques [35], [37], [38]. Future research directions in this
case could be geared towards energy-aware routing models, combining self-
organizing clustering with fault-tolerant mechanisms to dynamically balance
workload distribution across edge nodes. Likewise, security-improved Al models
for Green IoT systems should be considered as well. The exponential rise in the
adoption of zero-trust authentication models and game-theoretic trust frameworks
suggests that low-energy security protocols are important [78], [50], [82]. Based on
this, there is a pressing need to investigate Al-improved secure routing using
metaheuristic trust-based algorithms to reduce cryptographic overhead while
ensuring strong security. Moreover, bio-inspired EE improvement for IoT is a
notable aspect open for further research. As reported across studies, bio-inspired
Al models, such as the DA and Sailfish optimization, have shown significant
enhancement in energy-aware clustering in large-scale sensor networks [33], [37].
Thus, expanding nature-inspired optimization techniques for energy-aware IoT
scheduling and adaptive transmission control could improve self-organizing
network sustainability. Similarly, Al-optimized DSEM in Smart Cities should not
be ignored. Al-driven load forecasting models have improved energy scheduling
in smart cities as reported in [22], [41], [58]. There is a need for future studies to
focus on explainable DRL-powered demand-side management, combining
weather prediction, IoT-based consumption tracking, and dynamic resource
distribution. Finally, adaptive Al scheduling for next-generation MIMO IoT
networks should also be on point. This is because MIMO-assisted routing schemes
have shown significant improvements in transmission EE [69]. Consequently,
future research could investigate Al-powered adaptive scheduling for multi-hop
MIMO networks to ensure optimized transmission bandwidth and minimal energy
leakage in 5G-based 10T systems. Across all studies, there were notable limitations
in terms of evaluation and deployment. Several studies evaluated their work based
on simulated or testbeds but no real-world validation. To close the gap between
simulation and deployment, future work should focus on scalable, interoperable,
and empirically validated solutions that can operate in heterogeneous and
unpredictable environments.

4. CONCLUSION
This paper presented an SLR demonstrating the progress and persistent challenges

in advancing energy-efficient IoT and WSN systems. The study reviewed several
relevant articles and categorised the findings based on the EE technique used to
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optimise energy use extend network lifetime and provide future directions. Our
tindings reveal the complex interplay between Al-based optimization, adaptive
networking, and secure energy management as essential to sustaining IoT systems
across the studied examined. Through combined innovative techniques such as
DL, RL, FL and bio-inspired clustering, there are significant improvements in
routing, resource usage, and energy savings. Also, advances in blockchain-based
security, MIMO communication, and heuristics scheduling demonstrate the
essence of the increasingly autonomous IoT frameworks. Particularly, Al-driven
methods offer tremendous energy savings but are challenged with scalability and
computational overhead. Furthermore, we found that fog-based and edge-based
schemes like task-offloading and layer designs achieved even greater efficiency but
often at the cost of added delay. Improvements in clustering and routing contribute
significantly to extended network lifespan but need contextual adaptation. While
security solutions attempt to balance protection and energy use, the need for
lightweight cryptographic methods tailored to resource-constrained devices
remains. Additionally, EH and hardware-software co-design demonstrate promise
but are still strained by environmental constraints and device limitations. In
general, real-world validation, mobility support and resolving security-efficiency
conflicts remain pressing challenges. Thus, future research should focus on
lightweight, scalable solutions validated under real-world conditions. They should
prioritize hybrid Al models for low-power hardware, adaptive secure protocols
and cross-layer strategies that balance EE with system reliability. As IoT networks
grow, decentralized, privacy-aware optimization frameworks will be key to
ensuring secure, low-power operation. Consequently, promising research
directions include quantum-assisted optimization, Al-driven interference
management, and secure multipath routing to support sustainable, smart
connectivity.
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