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Abstract 
 

The advancement of energy efficiency in the Internet of Things (IoT) and wireless sensor 
networks (WSNs) is an important research effort, given their rapid application expansion 
across smart cities and homes, healthcare, agriculture, and industrial automation. This 
paper conducted a comprehensive survey of existing innovative solutions to challenges 
focusing on hardware-based, software-driven, and network optimization approaches, 
alongside artificial intelligence-driven and demand-side energy management, and security-
enhanced frameworks. 82 peer-reviewed journal articles and conference papers published 
between 2021 and 2025 were reviewed, using sources such as IEEE Xplore, ScienceDirect, 
Web of Science, SpringerLink, and Google Scholar. It identifies significant developments 
in energy-efficient techniques, including ultra-low-power hardware, adaptive scheduling, 
bio-inspired clustering, and energy harvesting. Others include intelligent optimization 
methods(e.g. machine, quantum-inspired heuristics), and blockchain-enhanced security. A 
structured evaluation process is implemented, following PRISMA guidelines, categorizing 
studies, and synthesizing findings to highlight technological progress, challenges, and 
future research directions. The findings show a growing trend towards integrated, multi-
objective routing and cross-layer energy optimizations, with significant progress in 
minimizing energy use, network lifetime and improving security mechanisms. However, 
challenges like scalability, computational overhead and real-world deployment issues 
persist. Our study offers valuable insights for sustainable energy management in IoT and 
WSNs and helps guide future development toward more resilient, adaptable and 
sustainable energy-aware systems. 
 
Keywords: IoT, WSNs, Energy efficiency techniques, AI-based optimization, Edge 
computing. 

 
1. INTRODUCTION 
 
The Internet of Things (IoT), a larger application platform built upon wireless 
sensor networks (WSNs), has revolutionized industries and reshaped how we 
interact with technology and the environment. IoT connects a massive network of 
devices equipped with sensors, actuators, and communication modules that collect, 
analyse, and share data over the Internet [1-5]. These interconnected systems allow 
devices to operate independently, enabling smarter decision-making and driving 
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transformative innovations across sectors such as smart homes, healthcare, smart 
cities, industrial automation, agriculture, and transportation [1-6]. In recent years, 
the development of miniaturized sensors and actuators, along with widespread 
access to high-speed internet, has supported the rapid spread of smart devices 
across domains [2,3]. This is evident in remote sensing and data capture, where fog 
and cloud services play a vital role. Current projections estimate that by 2030, over 
75 billion IoT devices will be in use, underscoring their critical role in shaping 
modern infrastructure [1,5, 6]. IoT systems are more scalable than traditional 
WSNs, using internet-enabled devices, along with fog and cloud platforms, as 
gateways to the wider network. 
      
While the increase in the number of IoT devices is beneficial in terms of efficiency 
and innovations, it also poses energy efficiency (EE) challenges, as many IoT 
devices rely on limited power sources, especially in remote or mobile settings [1-
15]. The battery-powered sensors tagged to these devices, such as smartphones, 
smart electric appliances, smart office equipment, cars, and so on, often consume 
large amounts of energy. Excessive energy consumption reduces device lifespan, 
increases operational costs, and contributes to environmental degradation [1-15]. 
This challenge is further exacerbated by the remote locations of these nodes in 
some cases, at which the maintenance is highly impractical, resulting in constraints 
in sustaining the operation for long periods [1-15]. Tackling this issue requires 
innovative solutions that optimize energy use, integrate renewable energy sources, 
and balance performance with resource management.  
 
Several optimization techniques and energy management systems are employed 
across different layers of the network architecture to optimise energy use. This 
includes lightweight encryption, energy-efficient routing protocol, duty cycle, edge 
computing, data compression, power-aware scheduling, energy harvesting (EH), 
battery management systems, and network traffic optimization[1-15], etc., have 
been introduced to help manage power consumption in IoT devices and networks 
to prolong the device's lifespan. While these solutions exist in the IoT ecosystems, 
energy use remains a critical challenge. Research has shown that energy 
consumption is the major barrier to scaling IoT systems as it constrains the 
processing of IoT network functionalities. Studies have shown that 
communication and sensing activities consume a significant portion of power[1-
8]. Thus, optimizing EE is essential to ensuring the reliability, scalability, and 
ecological sustainability of IoT ecosystems.  
 
Given the above background, this paper conducts a review to systematically 
evaluate current strategies, technologies, and challenges in energy management for 
IoT systems. It is intended to explore and integrate recent developments in energy-
efficient design and operation, focusing on hardware innovations, software 
algorithms, network protocols, artificial intelligence (AI)-driven optimizations and 
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demand-side management while highlighting important trends, techniques, and 
future directions. This study offers valuable insights into developing a new energy-
aware framework that helps IoT devices extend their lifespan by using resources 
more efficiently, meeting the growing need for resource-efficient technologies. The 
main contributions of this paper are: 

1)  Provided a structured review of recent advances in energy-efficient 
techniques for IoT and WSNs, following the Systematic Reviews and 
Meta-Analyses (PRISMA) guidelines and drawing from a range of peer-
reviewed sources. 

2) Identified and categorized energy management strategies, covering 
hardware-level designs, software-based methods, network and AI-driven 
optimizations, etc., with attention to trends like federated learning (FL), 
bio-inspired, quantum-based, multi-objective, blockchain-supported 
security and reliability, and so on. 

3) Outlines several important research directions, focusing on scalable, 
deployment-aware solutions that combine machine learning (ML), edge 
computing (EC) and decentralized architectures to support sustainable, 
efficient IoT systems 

 
The remaining parts of the paper are organized as follows: Section 2 presents the 
background information and related works, and Section 3 presents the 
methodology. Section 4 presents the analysis of existing IoT energy-efficient 
strategies, Section 5 presents the findings discussions and possible research 
direction while Section 6 concludes the paper. 
 
2. LITERATURE REVIEW 
 
2.1. IoT Energy Efficiency 
 
The architecture of IoT systems is organized into multiple layers with each 
performing specific functions that are critical to the system’s operation. The 
sensing layer is responsible for collecting environmental or operational data via 
sensors and actuators. The network layer allows communication through protocols 
like ZigBee, LoRaWAN, or cellular networks, while the application layer processes 
data for analytics, visualization, or decision-making [1][9]. Given the distinct layers, 
the energy utilization across them differs significantly. Particularly, the network 
layer often accounting up to 70% of the total energy used by IoT devices, which 
makes it the most power-intensive component [3, 5, 8]. To deal with EE 
challenges, several strategies have been designed, developed, and deployed such as 
hardware-based, software-based, and network-based such as optimizing 
communication protocols and minimizing redundant data transmission. In 
addition, EC at the application layer has been introduced to reduce energy use by 
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processing data next to the source. As shown in Figure 1, collectively, the goal is 
to ensure devices’ efficiency and increase the network lifespan. 
 

 
 

Figure 2. IoT energy efficiency techniques 
 

Furthermore, EE in the IoT ecosystem relies on hardware and software techniques 
to minimize power consumption while maintaining system reliability. Hardware-
based methods include ultra-low-power microcontrollers, event-driven sensors, 
and optimized circuits that dynamically adjust voltage and clock speed to reduce 
energy use [3, 9]. These are complemented by EH mechanisms, such as solar or 
piezoelectric elements, enabling extended operation without frequent battery 
replacements [9-11]. Outdoor solar panels and RF or thermal harvesting increase 
autonomy in urban and industrial settings, achieving up to 80% energy self-
sufficiency. Equally, software techniques work alongside hardware optimizations, 
dynamically adjusting system behaviours based on workload. Dynamic voltage and 
frequency scaling (DVFS) reduce processing demands, cutting energy use by over 
90% in low-traffic conditions. Task scheduling and middleware enhance resource 
distribution by regulating sensor activity to minimize unnecessary operations [3, 9, 
14]. Additionally, data compression lowers communication energy costs by 30–
50%, depending on data type, further improving overall efficiency. 
 
Beyond individual devices, EE is shaped by communication and network-level 
strategies. Wireless communication is energy-intensive, leading to the use of duty 
cycling, adaptive transmission control, and data aggregation to reduce transmission 
frequency and duration. Low-power hardware designs and duty cycling alternate 
between active and sleep modes to conserve energy [1, 3, 5, 8, 9]. At the network 
level, energy-aware routing, topology management, and load distribution extend 
the system lifespan by balancing energy demand [1, 4, 14]. In addition, EC supports 
local processing, minimizing cloud storage reliance and cutting transmission-
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related energy use by up to 60% in dense networks [9]. ML and AI, such as deep 
learning (DL), FL, and reinforcement learning (RL), enable real-time adaptation to 
usage patterns and environmental conditions. These learning-based models 
optimize scheduling and resource allocation across networks [2, 9]. EH and 
renewable energy integration (REI) [9-11, 13] further align device operations with 
available energy sources or grid conditions [7, 14]. EH, combined with EC allows 
devices to process data locally using renewable power to reduce transmission 
dependence [13]. Likewise, demand-side energy management (DSEM) 
complements this by optimizing electricity consumption and lowering costs. 
Studies show that integrating solar harvesting, adaptive sampling, and similar 
approaches can cut energy use by up to 60-80%, improving the efficiency and 
sustainability of IoT systems. These energy-aware techniques improve network 
lifetime and reliability while mitigating environmental impact. However, achieving 
optimal balance requires managing trade-offs [1]. For example, improving data 
accuracy may require more frequent transmissions, which in turn increases energy 
use. Likewise, improving security or fault tolerance can introduce overheads that 
impact latency or EE. Consequently, researchers are now focusing on multi-
objective optimisation to balance the competing demands. 
 

 
                 (a)                                               (b)   (c) 

Figure 2. (a) DVFS architecture, (b) Zigbee module, (c) Solar panel 
 
2.2. Related Works 
 
This section presents selected reviews and surveys on EE optimization in the 
context of IoT and WSNs. These works cover data aggregation, fault tolerance, 
routing protocols, low-power design, EH, and communication strategies. Several 
studies have reviewed efficient data aggregation and routing. Begum and Nandury 
[1], Bharany et al. [2], and Khan et al. [4] reviewed methods to reduce energy use 
while maintaining reliable communication. Begum and Nandury [1] provided a 
general overview of data aggregation strategies, while Khan et al. [4] focused on 
fault-tolerant mechanisms in green cloud computing. Bharany et al. [2] 
concentrated on energy-efficient routing in underwater sensor networks (UWSNs), 
incorporating ML techniques to extend network lifetime and reduce energy usage. 
Low-power design has also been a prominent topic. Kumar et al. [3], Barge and 
Gerardine [8], and Almudayni et al. [14] surveyed various techniques such as clock 
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gating, voltage and frequency scaling, and AI-based methods to improve energy 
use in IoT systems. Kumar et al. [3] also highlighted the trade-offs involved in 
achieving a balance between security, interoperability, and performance. 
Almudayni et al. [14] proposed bio-inspired algorithms and fuzzy logic-based 
approaches, while Barge and Gerardine [8] offered a detailed architectural analysis 
aimed at extending battery life.  
 
Furthermore, EH has been the focus of studies by [11], [5], [10], and [13], each 
proposing a way to support self-sustaining IoT systems. Study [11] adopted a 
layered view, mapping EH sources to specific device functions. Study [5] examined 
LoRa-based methods for conserving energy, while [10] supported its analysis with 
real-world case studies. Study [13] developed a structured classification of EH 
techniques, optimization strategies, and efficiency metrics. Similarly, 
communication methods also play a central role in energy optimization. Souri et 
al. [12], [7], and Ali et al. [15] investigated communication protocols, scalability, 
and intelligent approaches to reduce energy overhead. Souri et al. [12] surveyed 
IoT communication trends, with attention to security and scalability. Lastly, 
authors in [7] linked smart building energy management to IoT policy constraints, 
and Ali et al. [15] examined energy-efficient communication strategies in 
underwater IoT (IoUT) environments. 
 

Table 1. Summary of related works 
Study Focus Findings Key Strengths Limitations 
[1] Energy-saving 

techniques for 
IoT devices using 
LoRa 

Identifies 
energy 
parameters 
(transmission 
power, 
bandwidth); 
categorizes 
techniques 
(harvesting, 
transfer, 
conservation); 
analyzes 
geographic 
research trends 

Rigorous SLR; 
broad coverage (44 
studies); dual-layer 
focus (IoT and 
LoRa) 

Limited empirical 
validation; lacks 
comparative 
metrics; 
scalability not 
analysed 

[2] Fault tolerance in 
green cloud 
computing 

Classifies fault-
tolerance 
approaches 
(proactive vs. 
reactive); 
examines 
energy-fault 

Systematic 
classification; 
identifies gaps; and 
addresses 
automation and 
user control 

Mostly 
theoretical; lacks 
real-world 
validation. 
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Study Focus Findings Key Strengths Limitations 
trade-offs with 
AI/ML. 

[3] Low-power 
design for IoT 
devices 

Reviews 
hardware 
(DVFS, MEMS 
sensors), 
software, and 
EH methods 

Broad scope; real-
world applications; 
includes case 
studies 

Limited 
quantitative 
analysis: security-
power trade-offs 
not addressed 

[4] Energy-efficient 
routing in 
UWSNs 

Uses ML for 
adaptive 
routing; 
addresses cross-
layer and 
security 
considerations 

Strong taxonomy: 
acoustic channel 
constraints 
considered 

No performance 
comparisons; 
lacks 
experimental 
validation 

[5] Energy-saving 
schemes in IoT-
LoRa 

Categorizes 
energy 
parameters and 
conservation 
methods; notes 
geographic 
research trends. 

Structured SLR; 
regional trends 
identified 

Mostly 
descriptive; data 
limited to pre-
2022 

[6] EE in SDWSNs Reviews major 
energy 
consumers; 
discusses 
routing, sleep 
scheduling, and 
AI-based 
optimization 

Comprehensive 
challenge overview: 
future directions 
outlined 

No deployment 
studies; lacks 
empirical testing 

[7] IoT applications 
for energy 
management in 
smart buildings 

Review 
architecture, 
protocols, 
adoption 
barriers, and 
application 
domains 

Multidimensional 
perspective; 
includes policy 
insights 

Mostly 
descriptive; no 
case studies or 
evaluations 

[8] Architectural 
low-power 
design for IoT 

Covers power 
gating, voltage 
scaling, 
hardware 
acceleration 

Technical depth; 
links architecture 
to IoT constraints 

No experimental 
results; lack 
combined 
method 
evaluations 

[9] EE in IoT 
systems 

Integrates 
hardware, 
protocols, AI, 
and renewables; 

Wide scope; links 
AI to energy goals 

No quantitative 
comparisons: 
implementation 
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Study Focus Findings Key Strengths Limitations 
promotes cross-
layer 
optimization 

issues not 
discussed 

[10] EH techniques 
for IoT 

Identifies EH 
sources and 
real-world 
strategies 

Conceptual clarity; 
includes practical 
case studies 

No comparative 
analysis of EH 
efficiency 

[11] EH within IoT 
layered 
architecture 

Maps EH 
sources to IoT 
layers; discusses 
storage and 
power 
management 

Framework aligns 
EH with system 
needs 

Limited technical 
depth on 
implementation 

[12] IoT 
communication 
strategies 

Review five 
strategy types, 
technologies, 
and evaluation 
metrics 

Clear taxonomy; 
identifies open 
challenges 

Lacks critical 
analysis; English-
only literature 

[13] Energy 
management in 
IoT 

Covers energy 
efficiency, 
harvesting, and 
optimization 
techniques 

Thematically 
organized; domain-
spanning 

No performance 
evaluation; lacks 
technical detail 

[14] Causes of energy 
inefficiency in 
IoT 

Proposes a 
multi-layered 
framework 
using optimized 
protocols, fuzzy 
logic, and bio-
inspired 
methods 

Strong conceptual 
depth; integrates 
AI with 
communication 
efficiency 

No empirical 
validation; lacks 
comparative 
performance 
analysis 

[15] Energy-saving 
techniques for 
IoT devices using 
LoRa 

Identifies 
energy 
parameters 
(transmission 
power, 
bandwidth); 
categorizes 
techniques (EH, 
transfer, 
conservation); 
analyzes 
geographic 
research trends 

Rigorous SLR; 
broad coverage (44 
studies); dual-layer 
focus (IoT and 
LoRa) 

Limited empirical 
validation; lacks 
comparative 
metrics; 
scalability not 
analysed 
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As shown in Table 1, recent IoT EE reviews reflect a broad but disjointed focus, 
with most studies targeting isolated techniques instead of pursuing integrated 
solutions. Studies like [5], [10], and [11] focused on EH, while [4] and [12] explored 
network optimization and routing strategies but lacked discussion on hardware-
based EE and cross-layer approaches. Additionally, [5], [10], and [11] provided 
limited quantitative comparisons, resulting in a lack of assessing the deployment 
trade-offs. Research on low-power design and underwater IoT EE in [3], [8], and 
[15] overlooked security overhead implications, while Ali et al. [15] examined REI 
and software-driven efficiency. Studies [6], [13], and [14] addressed optimization 
across IoT layers but did not analyse interactions between layers in multi-protocol 
environments. Likewise, Poyyamozhi et al. [7] and Manohar & Dharini [9] 
discussed smart energy management but failed to include standardization 
challenges in protocol compatibility, interoperability, and regulatory frameworks. 
Given the above studies, it is important future research should adopt a more 
integrated approach, incorporating advancements in hardware, software, 
communication, EH, and AI-driven optimization. The purpose of this paper is to 
explore these gaps with collaborative, cross-layer strategies to provide scalable, 
adaptable solutions tailored to evolving IoT applications, the purpose of this paper.  
 
3. METHODS 
 
This employs a systematic literature review approach to analyze advancements in 
IoT EE techniques for resource-constrained devices and large-scale deployments. 
It focuses on hardware-based, software-based, and network efficiency, AI-driven 
energy optimizations, DSEM and security-enhanced frameworks. Relevant peer-
reviewed journal articles and conference papers from 2021–2025 were selected for 
this review. Sources include IEEE Xplore, ScienceDirect, Web of Science, 
SpringerLink, and Google Scholar. The selection criteria focused on relevance to 
the topic, citation impact, evidence of technological innovation, and empirical 
validation to ensure high quality in the study. Our data extraction followed a three-
stage process: (1) Initial screening, filtering abstracts and keywords to align with 
inclusion criteria; (2) Categorization, classifying studies into individual and hybrid 
techniques; and (3) Trends and gap analysis, synthesizing findings to highlight key 
developments, limitations, and future research directions. The evaluation process 
combined qualitative and quantitative analysis, following the Preferred Reporting 
Items for PRISMA guidelines [16] to ensure transparency, reproducibility, and 
structured reporting.   
 
Using PRISMA, search terms included “energy efficiency techniques in IoT,” “IoT 
energy management techniques,” “hardware-based EE techniques,” “software-
based EE techniques,” and “AI-based EE optimization,” guided by Boolean 
operators “OR” and “AND.” Initially, 210 relevant articles were retrieved, with 8 
duplicates removed, leaving 155 studies for screening. Following the eligibility 
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assessment, 55 studies were excluded due to a lack of empirical analysis or duplicate 
contributions, resulting in 82 selected papers. Inclusion criteria focused on 
relevance to IoT energy management, technological innovation, empirical 
validation, theoretical models, and practical implementations, including future 
research discussions. Exclusion criteria filtered out studies outside IoT/WSN 
scope, outdated papers, duplicates, and inaccessible full texts. 
 

 
 

Figure 3. PRISMA process of selected studies 
 
 
4. RESULTS AND DISCUSSION 
 
4.1. Energy Efficiency State-of-The-Art 
 
This section analyses various EE techniques used in IoT systems to improve device 
performance and network lifetime. In practice, EE is rarely achieved through a 
single method. Most real-world solutions combine, hardware, software, 
networking, and communication and intelligent-based approaches to meet energy 
demands in different conditions. In the studies reviewed, around 95% of the 
techniques were hybrid-based, for instance, combining low-power hardware, REI, 
AI-driven optimization, and dynamic energy management. These strategies not 
only improve reliability and lifespan but also help reduce environmental impact. 
These studies are summarized in Tables 2 to 13. This shows that careful design 
remains crucial to balancing cost, complexity, and dependability in energy-efficient 
IoT deployments. 
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1) Software-based Methods 
 
Software-based techniques or smart algorithms improve EE in IoT devices by 
managing tasks intelligently, even on low-power hardware. These approaches 
significantly reduce energy use via smarter software execution and some of the 
studies are summarized in Table 2. Liu et al. [17] developed a task-scheduling 
algorithm for EC systems using heterogeneous multicore processors (HMPs) to 
minimize energy use while ensuring deadline adherence. Their approach integrates 
task prioritization, core-aware mapping, and predictive DVFS. Tasks are ranked 
based on deadlines and dependencies, mapped using a performance-execution-
time-power suitability score, and assigned DVFS settings based on estimated 
energy consumption. Experiments on an ODROID-XU4 platform demonstrate 
significant energy savings and consistent deadline adherence, making it a scalable 
solution for edge scheduling. Likewise, Ketshabetswe et al. [18] improved two 
adaptive lossless data compression algorithms: ALDC and FELACS, to reduce the 
energy cost of data transmission in WSNs. They enhanced ALDC by dynamically 
selecting shorter Huffman codes, boosting energy savings from 73% to 77%. 
FELACS was refined with an outlier detection method that reduces data variability, 
improving both compression and accuracy. Performance evaluations using real-
world datasets identified an optimal block size of 1000 samples for efficient 
transmission. 
 
Beyond software techniques, EC enhances EE by enabling local data processing. 
Bhatia [19] proposed a hierarchical IoT-edge framework that integrates inactivity 
modes, load balancing, and predictive algorithms to optimize power consumption. 
The system manages sensor activity, predicts idle periods, and reallocates resources 
while dynamically switching IoT nodes based on battery levels and usage patterns. 
A medical campus deployment validated its effectiveness, showing a 29.46% 
reduction in energy use and improved network stability with a lower packet loss 
ratio of 0.51%. Hua et al. [20] also introduced a mobility-aware task scheduling 
framework for edge-cloud computing, enabling flexible task execution between 
local devices, edge servers, and the cloud. They formulated the problem as a mixed-
integer program (MIP) and proposed a heuristic algorithm (MAH) to overcome 
computational complexity. Simulations demonstrate a 93% reduction in mobile 
device energy use while maintaining low-latency performance, particularly as time 
slots increase. Moreover, Harb et al. [21] designed CLARA, an adaptive sampling 
and fault-tolerant recovery method for periodic WSNs, leveraging spatial-temporal 
correlation and smoothing algorithms. While effective under stable conditions, 
CLARA’s reliance on fixed parameters may limit performance in dynamic or 
heterogeneous settings. Small-scale real-world evaluations confirm its practicality. 
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Table 2. Summary of software-based EE methods 
Ref. Objective EE 

Techniques 
System 
Components 

Implementation 
/ Approaches 

Evaluation 
Metrics 

Results Limitations 

[17] EE 
scheduling 
for edge 
devices 

DVFS, task-
level 
optimization 

Edge nodes 
(ARM 
big.LITTLE) 

Energy-aware 
scheduling, 
predictive task-
core mapping 

Energy use, 
deadline 
miss rate 

20.9% 
power 
reduction 

Migration 
overhead 
ignored 

[18] EE via 
adaptive 
compression 
in WSNs 

Huffman-
optimized 
ALDC, 
FELACS 
outlier 
detection 

WSN nodes 
(env. data) 

ALDC with 
Huffman; 
FELACS tuned 
for accuracy 

Energy 
saved, 
compression 
ratio, 
codeword 
size 

77% 
energy 
saved; 
50% 
smaller 
codeword 

High 
compute cost; 
untested on 
diverse 
sensors 

[19] IoT-edge 
hierarchical 
EE 
framework 

Inactivity 
mode, 
resource 
allocation, 
predictive 
models 

IoT-edge with 
EE gateways, 
sensors 

3-layer 
architecture + 
blockchain 
security 

Energy use, 
PLR, system 
stability 

29.46% 
energy 
saved; 
PLR 
0.51%; 
MAS 
84.69% 

Narrow test 
scope; theory 
limits 
generalization 

[20] Mobility-
aware edge-
cloud EE 

Power 
control, 
offloading, 
scheduling 

Mobiles, 
edge/cloud 
servers, LTE 
BS 

Dynamic cost 
matrix; iterative 
MIP 

Energy, 
latency, QoS 
compliance 

MA-MIP 
saves 
93%; 
MAH 
efficient 
& simpler 

Single BS 
model; MIP 
scales poorly 

[21] Boost WSN 
EE via 
adaptive 
sampling 

Data 
reduction, 
fault 
tolerance 

Cluster-heads, 
sink 

Sampling rate + 
fault-tolerance 
algorithms 

Alive nodes, 
energy, 
packets, 
lifespan 

64% data 
drop; 
error 
<0.15 
(MA) 

Needs post-
deployment 
tuning 

 
2) Software-based with AI-optimization Methods 
 
As stated above, hybrid dynamic approaches such as software-based EE and AI-
based optimization are integrated to improve IoT energy management. They utilize 
real-time data from sensors and smart meters, which are analysed by AI-driven 
algorithms to predict energy demand and allocate EE.  Unlike traditional methods, 
these AI-drive technologies continuously adapt to changing conditions, ensuring 
optimal resource allocation, and minimizing energy waste. Several studies have 
contributed to AI-based energy optimization integrated with security and fault 
tolerance to improve sustainability and reduce energy use as summarized in Table 
3 and Table 4.  Aljohani [22] proposed a transformer-based DL framework for 
energy demand forecasting in smart city IoT networks. It captures spatial and 
temporal dependencies to generate real-time predictions, integrating IoT devices, 
sensors, and smart grids via cloud computing for dynamic energy management. 
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Case studies show reduced energy use, costs, and emissions, with strong 
stakeholder support. Similarly, Raval et al. [23] combined multi-agent systems and 
genetic algorithms (GAs) for decentralized energy management. Their energy 
transparency protocol modelled consumption as sensing, processing, and 
communication functions. The RL-based fuzzy logic with GAs improves sensing 
and energy usage across IoT swarms, achieving a 19% reduction in consumption 
rate and 40% lower total energy use per time step, improving stability. Wang et al. 
[24] also developed MADC, a scalable DRL algorithm for improving RPL routing 
in IIoT networks. They used centralized training and decentralized execution 
alongside lightweight actor networks for real-time decisions, integrating multi-scale 
convolution and multi-head self-attention for robust evaluation. Simulations show 
superior energy efficiency, packet delivery, and queue loss compared to existing 
RPL methods. In the same vein, Mutombo et al. [25] developed EER-RL, an RL-
based energy-aware routing protocol for IoT networks. They employed Q-learning 
in a cluster-based model, nodes select next-hop routes based on residual energy 
and hop count to enable decentralized learning without global state reliance. 
Simulations indicate improved energy efficiency and network lifetime over 
LEACH and PEGASIS, particularly in larger networks. 
 
Furthermore, Godfrey et al. [26] introduced a distributed opportunistic scheduling 
(DOS) protocol using RL for SDWSN in IoT, optimizing EE. The RL agent 
dynamically prioritizes objectives like energy use, load balancing, and link quality 
using real-time confidence estimates and shaped rewards. NS-3 simulations show 
that DOS-RL surpasses OSPF and SDN-based Q-routing in packet delivery, 
latency, and EE across various conditions. In a similar study, Rashid et al. [27] 
suggested an adaptive CNN for energy-efficient human activity recognition 
(AHAR) on low-power wearable devices. Instead of early-exit decisions based on 
classification confidence, they introduced an Output Block Predictor (OBP) using 
statistical features to determine whether to use a lightweight or full CNN path 
during inference. Validation on two public datasets confirms improved accuracy, 
reduced energy consumption, and lower memory usage compared to state-of-the-
art methods. AHAR runs efficiently on microcontrollers, making it suitable for 
wearable health monitoring. Balakrishnan and Rajkumar [28] proposed an 
improved metaheuristic algorithm for optimizing cluster head (CH) selection in 
IoT-based healthcare systems. Their method is based on the Mayfly optimization 
algorithm (MOA) with an active elite approach (AEA). It dynamically adjusts the 
search space to create elite candidates and avoid local optima, ensuring balanced 
energy use and extended network lifetime. Evaluated within a broader system 
combining biometric authentication, RL-based routing, and ECC for secure 
transmission, the method shows effectiveness. EMOA-AEA outperforms existing 
methods in energy use, network lifetime, and throughput, demonstrating AI-
improved clustering as a valuable technique for medical IoT. 
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To improve EE and communication security in EVs within the smart grid, Bhaskar 
et al. [29] proposed an IoT, ML, and blockchain-based system. In this case, IoT 
sensors enable real-time monitoring of battery levels and location, while a Random 
Forest classifier optimizes charging station selection. Additionally, a permissioned 
blockchain with ECC encryption ensures secure authentication and transactions. 
Simulations show a 94.5% accuracy in station selection, reduced wait times, lower 
communication overhead, and decreased charging costs. Likewise, Liu et al. [30] 
introduced QEGWO, a clustering algorithm combining quantum mechanics-
inspired clustering with AI-based Gray Wolf Optimization (GWO) to improve EE 
in Industrial WSNs (IWSNs). The model optimizes residual energy, intra-cluster 
distance, and base station proximity, combining a simplified quantum operator and 
dynamic elite pool for better global search and convergence speed. Simulations 
confirm superior performance in network lifetime, energy distribution, and delay. 
Ali et al. [31] equally developed E-FLZSEP, an adaptive fuzzy logic-based protocol 
for CH selection in WSNs. It integrates voltage, node density, and base station 
distance to improve cluster lifespan and data delivery efficiency. The authors 
highlight fuzzy logic’s ability to handle nonlinearity, combining clustering with 
multipath routing for improved fault tolerance and load balancing. 

 
Table 3. Summary of AI-driven software-based EE methods 

Ref Objective EE 
Techniques 

System  
Components  

Implementation  
/ Approaches 

Evaluation 
Metrics Results Limitations 

[22] AI-based 
energy 
optimizatio
n in smart 
cities 

Dynamic 
load 
prediction, 
real-time 
adaptation 

IoT, smart 
grids, cloud, 
urban infra 

Edge DL models; 
real-world 
validation 

Energy use, 
cost, model 
accuracy 

Better 
efficienc
y 
reduces 
the cost 

Narrow 
scope of 
sustainabilit
y 

[23] Decentraliz
ed AI 
energy 
managemen
t 

Adaptive 
sensing, AI-
based 
control 

IoT swarms, 
LPWAN 
(LoRa, 
Sigfox) 

RL adaptation; 
GA optimization 

Energy rate, 
stabilization 

40% 
energy 
reductio
n 

Limited 
interference 
handling 

[24] Scalable EE 
routing in 
IIoT 

DRL with 
centralized 
training 
distributed 
execution 

IIoT nodes 
(RPL) 

Actor-network 
with attention & 
dual critic 

Energy, 
lifetime, 
delivery 
ratio 

+40% 
lifetime, 
+16.7% 
delivery 

Simulation-
only; 
potential 
complexity 

[25] RL-based 
routing in 
IoT WSNs 

Q-learning 
with 
residual 
energy 
reward 

Clustered IoT 
WSNs with 
power limits 

RL for adaptive 
routing 

Lifetime, 
energy, 
scalability 

Outperf
orms 
LEACH 
& 
PEGAS
IS 

Memory 
cost; not 
deployed 

[26] Multi-
objective 
EE routing 

Shaped-
reward RL 
routing 

SDWSN 
(sensing/cont

CMOMDP, ε-
greedy Q-
learning 

PDR, delay, 
energy 

10–20% 
better 
PDR, 

Simulation-
only; 
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Ref Objective EE 
Techniques 

System  
Components  

Implementation  
/ Approaches 

Evaluation 
Metrics Results Limitations 

in SDWSN-
IoT 

rol/app 
layers) 

lower 
delay 

scalability 
unclear 

[27] EE CNN 
for HAR on 
edge 

Hardware-
aware exec 
path control 

EFM32 
MCU, multi-
output CNN 

Tested with HAR 
datasets 

Energy, 
memory, 
runtime, F1 

12% 
energy 
saved, 
similar 
accuracy 

HAR-
specific; 
dataset 
bound 

[28] CH 
selection in 
IoT 
healthcare 

Energy-
aware 
clustering, 
secure 
routing 

Body sensors, 
sink, crypto 
modules 

Elite-based 
metaheuristic 
strategy 

Lifetime, 
throughput, 
security 

43.9% 
better 
through
put, 
longer 
life 

Encryption 
+ 
optimizatio
n overhead 

[29] Secure, 
efficient EV 
energy 
managemen
t 

EE EV 
charging, 
secure 
transactions 

EV sensors, 
ML models, 
blockchain, 
chargers 

ML for charging; 
blockchain 
security 

Accuracy, 
wait time, 
overhead, 
capacity 

94.5% 
accuracy
; 15.45% 
↓ wait 
time; 
63% ↓ 
overhea
d 

Cost and 
scalability 
concerns 

[30] EE 
clustering in 
IWSNs 

EE 
clustering, 
multihop 
transmissio
n 

Static nodes, 
CHs, BS 

Simulated in 
diverse IWSN 
setups 

Energy, 
delay, 
longevity 

Beats 
baseline
s in 
energy 
& delay 

Simulation-
only; fixed-
node 
assumption 

[31] Lifetime 
extension 
via CH 
balancing 

Adaptive 
CH election 
by node 
energy 

CHs, BS Fuzzy logic + 
multipath routing 

Node death, 
alive %, 
throughput, 
energy 

+30% 
lifetime, 
–35% 
energy 

Low 
adaptability 
to topology 
change 

 
Rami et al. [32] introduced EECHIGWO, an improved GWO-based algorithm for 
energy-efficient CH selection in WSNs. It tackles premature convergence and the 
imbalance between exploration and exploitation by combining residual energy, 
sink distance, cluster head balancing, and intra-cluster distance into the fitness 
function. Simulations show improved network stability, energy use, network 
lifetime, and throughput compared to existing protocols in optimizing CH 
selection to balance energy use and extend node lifespan. Similarly, Devassy et al. 
[33] suggested NBA, a hybrid clustering protocol combining LEACH with the 
Dragonfly Algorithm (DA) to improve EE in WSNs for IoT applications. In the 
approach, NBA optimizes CH selection by modelling it as an optimization 
problem, incorporating dragonfly-inspired behaviours for better energy balance 
using swarm intelligence. Simulations confirm superior packet delivery, network 
longevity, and scalability over standard LEACH, emphasizing bio-inspired AI 
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strategies for energy-efficient IoT networks. Moreover, Tewari and Tripathi [34] 
developed NFEER, a neuro-fuzzy clustering protocol for IoT-enabled WSNs to 
optimize energy use in battery-powered sensor nodes. In their method, CH 
selection is based on distance to sink, cluster size, and residual energy, mitigating 
hotspot issues using a neuro-fuzzy inference system. The protocol surpasses PSO-
Kmean, BMHGA, and FSO-PSO in network lifetime, stability, and throughput, 
though its reliance on a static sink and ideal transmission conditions remains a 
limitation. In a similar but different approach, Vaiyapuri et al. [35] suggested CBR-
ICWSN, a hybrid clustering and routing protocol for efficient data collection in 
IoT-enabled ICWSNs within Mobile EC (MEC) settings. They employed black 
widow optimization (BWO) for CH selection and oppositional artificial bee 
colonies (OABC) for routing to ensure scalability and resource constraints in large 
networks. Simulations show improved energy efficiency, reduced packet loss, and 
higher network throughput compared to traditional protocols. 
 
Still, on clustering and routing for EE, Senthil et al. [36] focused on the challenges 
of IoT-based WSNs by introducing Orphan-LEACH (O-LEACH) and two hybrid 
optimization algorithms, SA-LSA and PSO-LSA. O-LEACH mitigates orphan 
node issues by allowing nodes outside standard clusters to act as gateways or form 
sub-clusters to improve coverage and reduce data loss. PSO-LSA and SA-LSA 
improve CH selection and routing using global and local search techniques. 
Experimental results show PSO-LSA's superiority in cluster formation, delay, 
packet loss, and network lifetime, proving its suitability for energy-constrained IoT 
scenarios. In parallel, Cherappa et al. [37] proposed a hybrid clustering and routing 
strategy combining Adaptive Sailfish Optimization (ASFO) with K-medoids 
clustering and E-CERP, a cross-layer routing protocol. The AI-driven clustering 
optimizes CH selection based on energy and proximity, while E-CERP enables 
efficient multi-hop routing. Simulations show enhanced energy savings and packet 
delivery accuracy, outperforming existing methods and proving the ASFO-K-
medoids and E-CERP approach effective for WSNs. In the same way, 
Lakshmanna et al. [38] developed IMD-EACBR, an energy-aware cluster-based 
routing scheme integrating an improved Archimedes optimization algorithm 
(IAOA) for CH selection and teaching–learning-based optimization (TLBO) for 
multi-hop routing. While clustering considers energy levels, node distances, and 
network topology, routing prioritizes nodes with higher residual energy and shorter 
transmission distances. NS-3 simulations show substantial improvements in 
network lifespan, energy efficiency, and data delivery over other metaheuristic 
protocols. 

Table 4. Summary of AI-driven software-based EE methods 
Ref. Objective EE 

Techniques 
System 
Components  

Implementation 
/ Approaches 

Evaluatio
n Metrics 

Results Limitations 

[32] Improve 
EE & 

Metaheurist
ic clustering 

WSN nodes, 
BS, fixed 
multi-hop 

MATLAB-based 
dynamic CH 
model 

Lifetime, 
throughp
ut, node 

+333.51
% 
stability, 

Simulation-
only; real-
world 
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Ref. Objective EE 
Techniques 

System 
Components  

Implementation 
/ Approaches 

Evaluatio
n Metrics 

Results Limitations 

stability in 
WSNs 

deaths 
(FND/H
ND/LN
D) 

extende
d 
lifetime 

scalability 
untested 

[33] Lower 
energy use 
& extend 
WSN life 

Bio-
inspired CH 
selection 

WSN nodes, 
CHs, BS 

Simulated with 
100 nodes 
(MATLAB) 

Live 
nodes, 
packet 
ratio, 
energy use 

More 
live 
nodes, 
better 
delivery 

Needs 
tuning; 
lacks 
deployment 

[34] Enhance 
routing via 
neuro-fuzzy 
logic 

Neural, 
fuzzy logic 
for CHs 

Heterogeneo
us WSN 
nodes, CHs, 
Sink 

Compared 
NFEER to PSO-
Kmean, 
BMHGA, FSO-
PSO 

Stability, 
lifetime, 
throughp
ut, energy 

+28% 
stability; 
103.5–
142.25
% 
longer 
life 

Fixed sink; 
ignores 
physical 
layer factors 

[35] Better data 
collection & 
routing 

Swarm, bio-
inspired 
routing 

WSN nodes, 
CHs, Master 
Station 

Custom protocol 
with 
BWO/OABC 

Lifetime, 
delay, 
energy, 
loss, PDR 

Higher 
efficienc
y, lower 
delay 

Simulation-
only; ML 
integration 
unexplored 

[36] EE via 
orphan 
node 
managemen
t 

Swarm/met
aheuristic 
routing & 
clustering 

WSN nodes, 
CHs, BS, 
orphans, sub-
clusters 

Hybrid CH and 
path selection 
protocol 

Cluster 
formation
, delay, 
loss, 
lifetime 

PSO-
LSA 
cuts 
delay, 
boosts 
lifetime 

Not tested 
in real 
settings; 
scalability 
unclear 

[37] EE 
clustering & 
routing in 
WSNs 

Cross-layer 
routing, EE 
clustering 

WSN nodes, 
CHs, BS, 
routing stack 

Simulated with 
500 nodes 

Energy, 
lifetime, 
PDR, 
delay, 
throughp
ut, jitter 

E-
CERP: 
1.97 mJ 
vs. 
7.75 mJ, 
100% 
PDR 

Static 
sensors; no 
mobility 
analysis 

[38] EE routing 
for IoT-
assisted 
WSNs 

Cluster-
based 
routing 
optimizatio
n 

WSN nodes, 
CHs, BS, 
optimizer 

Simulated in NS-
3.26 

Lifetime, 
node 
status, 
energy, 
throughp
ut, PDR 

PDR 
95.5%, 
Longer 
life, 
better 
through
put, 
lower 
energy 
use 

Requires 
tuning; no 
real-world 
test 
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3) Software-based with Edge Computing, DSEM and AI-optimization 
 
This section analyses EE techniques that combine software-driven methods, EC, 
and AI-based optimization to improve adaptability. Additionally, while some 
approaches incorporate security, others employ fault tolerance for system 
resilience. These algorithms improve power use by activating devices only when 
needed, while EC minimizes latency and cloud-related costs through local 
processing. Energy usage is optimized via demand prediction, automated control, 
and continuous energy flow refinement. Table 5 summarizes key studies. Akbari 
et al. [39] suggested a decentralized method for optimizing virtual network 
function (VNF) placement. This is mostly used in UAV-assisted Mobile EC (MEC) 
systems for smart agriculture, balancing timely data processing based on Age of 
Information (AoI) and EE. They employed a decentralized partially observed 
Markov decision process (DEC-POMDP) to model UAV interactions as well as 
an asynchronous federated deep Q-network (AFDQN) approach for collaborative 
VNF placement without raw data sharing. Simulations confirm lower AoI and 
higher EE compared to centralized methods, making it ideal for agricultural IoT. 
In the same vein, Ruby et al. [40] developed a two-tier FL architecture to deal with 
inefficiencies in traditional centralized FL systems under non-IID data 
distributions and energy constraints. The framework features IoT clients, low-
altitude UAVs for edge aggregation, and a high-altitude UAV as the central 
aggregator. By solving an optimization problem through dual decomposition and 
bisection search, the system minimizes computation and communication energy 
under time constraints. Offline and online client scheduling prioritizes participants 
based on model divergence weight and EE. Simulations using real-world data 
demonstrate reduced energy consumption and improved learning accuracy 
compared to existing methods. 

 
4) DSEMs with AI-optimization 
 
This section focuses on AI-driven optimization within DSEM, which dynamically 
adjusts consumption based on real-time grid conditions to improve efficiency and 
reduce costs. Table 5 summarizes key findings. Khodaparast et al. [41] suggested 
an energy-efficient DRL-based multi-agent framework for data collection in UAV-
assisted IoT networks. The approach is divided into: UAV navigation, sensor 
power management, and multi-UAV coordination. Each is tackled with specialized 
DRL algorithms: Deep Deterministic Policy Gradient (DDPG) for continuous 
control and DQL for discrete scheduling, to ensure improved performance. The 
approach effectively tackles energy constraints for both UAVs and sensors, 
particularly in dynamic, obstacle-prone environments. Simulation results show the 
framework’s effectiveness with significant energy savings and adaptability over 
conventional methods. Similarly, Ramadan et al. [42] investigated non-intrusive 
load monitoring (NILM) combined with IoT technologies to improve EE in 
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residential settings. Using a Factorial Hidden Markov Model (FHMM), they 
disaggregated household electricity consumption by appliance from a single 
measurement point. Integrated with ThingSpeak for real-time visualization and 
Twitter alerts, the system outperformed combinatorial optimization (CO) in 
appliance-level prediction, achieving lower RMSE values. It also facilitates 
consumer load-shifting based on ToU pricing.  Hafshejani et al. [43] equally 
suggested Signal-Dependent Sampling (SDS) to reduce IoT cyber-physical system 
(CPS) energy use. Unlike uniform sampling, SDS dynamically adjusts based on 
signal activity, achieving up to 94% power reduction with minimal precision loss. 
Case studies in ECG and greenhouse monitoring confirm the method's 
effectiveness in environmental applications, though ECG signals require careful 
tuning for diagnostic reliability. 
 

Table 5. Summary of AI-driven software-based EE methods with EC and 
DSEM 

Ref Objective EE 
Techniques 

System 
Components 

Implementation 
/ Approaches 

Evaluation 
Metrics Results Limitations 

[39] VNF 
orchestration 
in UAV-
MEC for 
smart 
farming 

Distributed 
learning for 
resource 
efficiency 

UAVs, MEC 
servers, IoT 
nodes 

UAV agents use 
AFDQN; a 
decentralized 
setup 

AoI, energy, 
robustness 

AoI 
<200ms; 
better EE 
vs. 
centralized 
model 

Fixed 
power/bandwidth; 
scalability untested 

[40] EE resource 
allocation for 
FL 

Computation-
communication 
balancing, 
parallelism 

IoT clients, 
UAVs, 
OFDMA 
subchannels 

Offline/online 
scheduling, 
bisection search 

Energy, 
accuracy, 
workload 
balance 

–25% 
energy, 
+40% 
accuracy 
vs. baseline 

Complex 
computation; no 
real-world 
deployment 

[41] Reduce total 
energy use of 
UAVs and 
sensors 
during data 
collection 
while 
ensuring task 
completion 

DRL-based 
trajectory 
planning, 
transmit power 
control, multi-
UAV 
scheduling 

UAVs 
(mobility, 
collection), 
sensors (data 
sources), DRL 
agents 

DDPG 
(trajectory, 
power); DQL 
(scheduling); 
finite-horizon 
MDP 

Energy 
consumption, 
success rate, 
DRL 
convergence, 
task allocation 

90.8% 
success; 
adaptive 
power 
more 
efficient; 
near-
optimal 
scheduling 

No interference 
model; fixed 
altitude; simplified 
battery; limited 
environmental 
dynamics 

[42] Residential 
EE via 
NILM & IoT 
alerts 

Load 
disaggregation, 
behavioural 
demand 
response 

Smart meters, 
FHMM, 
ThingSpeak 

FHMM on 
REDD dataset; 
real-time alerts 

RMSE, 
responsiveness, 
load shift 

FHMM 
RMSE: 
37.6W vs. 
CO 
49.46W; 
peak load 
cut 

Limited validation; 
low-frequency data 
limits accuracy 

[43] Lower IoT 
CPS power 
usage 

Rate adjustment 
based on signal 
features 

ECG, 
greenhouse 
monitors 

Bottom-up, 
software-only 
sampling control 

Sampling, 
energy use, 
regen. error, 
accuracy 

94% 
energy 
saved; 
minor 
accuracy 
impact 

Needs careful 
tuning for complex 
signals 
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5) Network-based Methods 
 
This subsection discusses the studies that focused on network and communication 
optimization techniques to enhance EE in IoT systems. These techniques reduce 
communication overhead, refine routing protocols, and minimize energy-intensive 
network operations. Some studies employing these methods as standalone EE 
schemes are summarized in Table 6. Al-Sammak et al. [44] introduced an adaptive 
transmission algorithm for IoT-based smart meters which dynamically adjust 
transmission intervals based on real-time electrical variations. Implemented on 
Arduino prototypes with LoRaWAN and NB-IoT, it achieved an 86.81% 
reduction in packet transmissions and over 87% energy savings, validated through 
paired T-tests. The method enhances network stability but is sensitive to threshold 
value selection. Likewise, Wei et al. [45] proposed an over-the-air (OTA) update 
mechanism for DL models in low-power EH IoT devices, addressing intermittent 
power and communication constraints. Their approach integrates delta encoding 
for weight-change transmission, an energy-aware communication protocol, and 
runtime mechanisms for stable updates under power fluctuations. Tested on a TI-
MSP430FR5994 device with BLE and a Raspberry Pi 4 edge server, it 
demonstrated a 7.3% reduction in update size, 25–30% energy savings, and a 45% 
improvement in update completion. Also, Duy et al. [46] developed EEGT, a grid-
based routing protocol to improve energy distribution and hierarchical 
communication in WSNs. Utilizing multi-criteria CH node (CHN) selection, 
minimum spanning tree (MST) based intra-cell routing, and ACO-driven inter-cell 
routing, it optimizes transmission energy costs. While simulations indicate 
efficiency gains, the complexity of hybrid routing and the absence of hardware 
validation may limit the actual deployment. 
 
6) Network-based Optimized with AI-driven Methods 
 
This subsection discusses studies that optimized network approaches with AI-
based methods while incorporating security and fault tolerance, as summarized in 
Table 6. Gang et al. [47] proposed an energy-efficient MAC protocol for UWSNs 
using Q-learning-based RL to mitigate collisions and extend network lifespan. Rx 
nodes dynamically adapt transmission strategies based on local observations, 
interference, battery status, and collisions, without requiring explicit coordination. 
Simulations show improved throughput, 38% fewer collisions, reduced energy use, 
and enhanced delay performance over standard MAC protocols. In parallel, 
Venkatachalam et al. [48] developed EEGP-MAC, a hybrid multi-agent MAC 
protocol integrating Q-learning and the Honey Badger Algorithm (HBA) for 
adaptive resource management. Their group-based prioritization scheme classifies 
nodes by location, energy level, and traffic type, assigning transmission priorities 
dynamically. Within each group, the QL-HBA algorithm selects optimal 
contending nodes using a fitness function based on local traffic and 



Journal of Information Systems and Informatics 
Vol. 7, No. 2, June 2025 

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882 

 

1496 | A Comprehensive Review of Energy Optimization Techniques in the Internet of ..... 

neighbourhood density. NS-3 simulations confirm EEGP-MAC outperforms 
IEEE 802.15.4, Hybrid-MAC, and QL-DGMAC in delay, energy efficiency, 
throughput, and packet delivery. Sellami et al. [49] focused on energy-aware task 
scheduling and offloading in 5G IoT edge networks using Deep RL (DRL) with 
an Asynchronous Actor-Critic Agent algorithm (A3C), SDN, and blockchain. The 
A3C algorithm optimizes task scheduling, while Proof-of-Authority (PoA) 
consensus secures communications, balancing computational load across edge and 
fog nodes. Simulations show reductions in energy consumption and processing 
delays, along with increased transaction throughput compared to PBFT. However, 
blockchain integration presents a complexity, with potential scalability and privacy 
concerns. 
 
In a similar study, Singh et al. [50] proposed a six-tier smart parking framework 
integrating RSU-based blockchain for data authentication, ECC for secure 
communication, virtualization for efficient storage, and Deep LSTM for parking 
data analysis and recommendations. In addressing issues such as centralization, 
bandwidth constraints, and privacy risks, simulations show improved EE, data 
privacy, integrity, and availability. Abdi et al. [51] equally developed RLBEEP, an 
RL-driven protocol optimizing routing, sleep scheduling, and transmission 
restriction to extend the WSN lifespan. RL allows nodes to acquire energy-efficient 
policies based on residual energy, hop count, and distance, while sleep scheduling 
and transmission control minimize unnecessary consumption. Simulations show 
enhanced network lifetime compared to other RL-based protocols, though high 
computational demands at the sink node limit scalability in resource-constrained 
environments. Yugank et al. [52] in their study focused on ANN-driven duty cycle 
optimization for battery-constrained Systems-on-Chip (SoCs) in data 
communication.  
 
They analyse operational parameters like duty cycle and power usage which are 
used by the ANN model to predict optimal power states, balancing energy during 
transmissions. The model was trained using a Scaled Conjugate Gradient (SCG) 
and evaluated with Mean Square Error (MSE). Experimental results show that a 
40%-50% duty cycle threshold maximizes efficiency, offering a practical way to 
reduce energy used in real-time deployments. Furthermore, Javadpour et al. [53] 
suggested a distributed routing protocol incorporating fuzzy clustering and PSO 
for energy-aware load balancing in IoT-based WSNs. The method utilizes Fuzzy 
C-Means clustering for sensor grouping and PSO for optimal CH selection, 
enhancing the stability and computational efficiency in routing. NS-2 simulations 
indicate a 9.57% increase in throughput and an 8.47% reduction in energy use 
compared to existing protocols. 
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Table 6. Summary of network-based and AI-driven EE methods 
Ref. Objective EE 

Techniques 
System  
Components  

Implementation / 
Approaches 

Evaluation 
Metrics 

Key 
Results 

Limitations 

[44] Adaptive 
transmissio
n in IoT 
meters 

Real-time 
scheduling 
via LPWAN 
(LoRaWAN
, NB-IoT) 

Smart 
gas/water 
meters with 
LPWAN 

Microcontroller-
driven adaptive 
transmission 

Packet count, 
reliability 

88.5% 
reductio
n in 
energy 
spikes 

Scalability 
and security 
not analyzed 

[45] EE OTA 
DL model 
updates 

Compressio
n, energy-
aware 
transmission 

Edge server 
(RPi 4), TI-
MSP430FR59
94, LeNet-5 

Real-hardware 
OTA updates 

Update size, 
energy, 
robustness 

7.3% 
smaller 
updates, 
25–30% 
energy 
savings 

Needs 
tuning; 
scalability 
unclear 

[46] Optimize 
WSN 
lifespan 

Dynamic 
CHN 
selection, 
ACO 
routing 

Sensor nodes, 
grid clusters 

MST intra-cell, 
ACO inter-cell 

Energy, 
uptime, 
harvested 
energy 

+30% 
efficienc
y over 
LEACH-
C 

No hardware 
test; routing 
complexity 

[47] EE MAC 
protocol 
with RL 
for 
UWSNs 

Adaptive 
TX power, 
collision 
avoidance 

UWSN: CHs, 
Rx nodes, 
sink 

Q-learning for 
slot scheduling 

Throughput, 
delay, PDR, 
utilization 

+23% 
throughp
ut, –38% 
collisions 

Needs large 
training data; 
static nodes; 
no real 
validation 

[48] EE MAC 
for large-
scale IoT 

Hybrid Q-
learning 
with HBA 

Grouped IoT 
devices (by 
energy/locati
on/traffic) 

Priority-based 
hybrid 
contention 
strategy 

Delay, 
energy, PDR, 
throughput 

45% 
energy 
cut, 10% 
PDR 
gain 

Algorithm 
complexity; 
simulation-
only 

[49] Energy-
aware 
offloading 
in 5G IoT 

DRL 
scheduling, 
PoA 
Blockchain 
security 

IoT devices, 
fog nodes, 
SDN, 
Blockchain 

DRL offloading, 
PoA Blockchain 
comparison 

Latency, 
throughput, 
energy 

Lowest 
latency 
(8.3s); 
6M txns 
(vs. 5M 
PBFT) 

Blockchain 
overhead; 
complex real 
deployment 

[50] EE smart 
parking 
with 
security 

Virtualizatio
n, ECC, 
DL-based 
prediction 

Sensors, 
RSUs, VMs, 
Blockchain 
nodes 

ECC encryption, 
LSTM prediction 

Energy, time 
cost, 
accuracy, 
privacy 

Virtualiz
ation 
boosts 
EE; 
secure 
authentic
ation 

Scalability, 
real EE 
impact 
untested 

[51] Prolong 
WSN life 
with RL 

Sleep 
scheduling, 
adaptive 
control 

Sensor nodes, 
sink 

RL reward-based 
sleep scheduling 

Energy, 
signal 
accuracy, 
overhead 

Delays 
FND by 
25–35%, 
reduces 
energy 

High 
compute 
demand; 
slow 
convergence 

[52] ANN for 
IoT power 
modeling 

Duty cycle 
tuning, 
ANN power 
prediction 

IoT sensors, 
SoCs, 
transceivers 

MATLAB 
simulation 

MSE, duty 
%, power 
usage 

~50% 
duty 
cycle; 
accurate 
power 
modeling 

No hardware 
validation 
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Ref. Objective EE 
Techniques 

System  
Components  

Implementation / 
Approaches 

Evaluation 
Metrics 

Key 
Results 

Limitations 

[53] EE & 
longevity 
in WSIoT 

Fuzzy 
clustering, 
heuristic 
routing 

CH, routing 
protocols 

Two-phase: FCM 
for clustering, 
PSO for CH 

Throughput, 
delay, energy, 
delivery rate 

+9.57% 
throughp
ut, –
8.47% 
energy 

No mobility 
support: 
cluster 
imbalance 
ignored 

 
7) Network-based Optimized with Software-based Methods 
 
A hybrid approach to improving EE in IoT systems that integrates software-based 
and network-based techniques is discussed in this subsection. While the software 
methods adjust energy usage in real-time, network-based approaches optimize 
communication overhead via energy-aware routing and EC. This combination 
reduces energy waste, improves connectivity, extends device lifespan, and supports 
sustainable smart grids. Key studies are summarized in Tables 7 and 8. dos Anjos 
et al. [54] presented a Time and Energy Minimization Scheduler (TEMS), a 
dynamic task scheduling algorithm with DVFS adaptation for hybrid IoT 
computing environments. Guided by a detailed cost model like processing energy, 
transmission energy, and device battery levels, TEMS facilitates balanced task 
allocation across IoT devices, MEC servers, and cloud centres. Simulations show 
energy savings of up to 51.6% and a task completion improvement of 86.6%, 
addressing growing IoT latency and energy challenges. Similarly, Ansere et al. [55] 
optimized the radio subsystem in large-scale 6G-enabled IoT networks through 
the Joint Energy-Efficient Resource Allocation (JEERA) algorithm. It jointly 
improves power allocation, sub-channel assignment, user selection, and active 
remote radio units (RRUs). The NP-hard optimization problem is tackled using 
fractional programming, Lagrangian decomposition, and the Kuhn–Munkres 
(KM) algorithm. Simulations demonstrate EE improvements of 33–37%, making 
JEERA a strong candidate for next-generation IoT systems. Furthermore, 
Ciuffoletti [56] proposed a remote checkpointing mechanism to support deep-
sleep duty cycles in stateful IoT edge devices, preserving volatile memory across 
sleep cycles. Their technology-agnostic model compares energy costs against light 
sleep methods, identifying scenarios where checkpointing is more efficient. 
Additionally, a secure transfer and recovery protocol reduces security risks using 
dynamic identifiers. Hardware prototypes validate functionality and energy savings, 
highlighting the method’s potential for constrained edge devices in low-duty-cycle, 
data-intensive applications. 
 
Equally, Baniata et al. [57] developed MIMO-HC, a clustering protocol for MIMO-
enabled IoT systems in 5G+ environments to tackle energy constraints, uneven 
depletion, and hotspot issues. Their centralized CH selection and unequal 
clustering strategy optimize cluster radii: smaller near the central station to reduce 
collisions, and larger for distant clusters to minimize delay. A probabilistic multi-
hop routing system balances load among CHs, while interface selection enhances 
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communication energy efficiency. Simulations show MIMO-HC outperforms UN-
LEACH, achieving 3x longer network lifetime, 40% lower CH energy use, better 
load balancing, and improved stability. Hemanand et al. [58] also investigated 
energy-efficient communication protocols for smart city IoT using NB-IoT over 
LTE-M with an application server. Their framework assesses adaptive power 
control, duty cycling, data aggregation, protocol optimization, and network 
topology adjustments. Simulations indicate 15–25% energy savings, with adaptive 
power control and network topology optimization having the highest impact. In 
another study, Somula et al. [59] developed SWARAM, a CH selection protocol 
integrating Euclidean distance-based clustering with the bio-inspired Osprey 
Optimization Algorithm (OOA). Using a fitness function incorporating residual 
energy and base station distance, SWARAM optimizes clustering to balance energy 
use and prevent network energy holes. MATLAB simulations show it outperforms 
EECHS-ARO, HSWO, and EECHIGWO, achieving 78% higher packet delivery 
and 24% reduced energy consumption, demonstrating effectiveness in static WSN 
deployments. Also, Shilpa et al. [60] suggested a hybrid clustering and routing 
scheme for heterogeneous WSNs, combining dynamic/static clustering (EEHCT) 
with firefly optimization (FFO) for residual energy-aware clustering and route 
selection. Simulations demonstrate improvements in network lifespan and packet 
delivery, although inconsistencies in energy balance metrics and reporting reduce 
clarity. 

 
Table 7. Summary of network-based optimized software-based EE methods 

Ref. Objective EE 
Techniques 

System 
Components 

Implementatio
n / Approaches 

Evaluation 
Metrics Results Limitations 

[54] Hybrid 
task 
offloading 
in IoT 

Real-time 
workload-
aware 
scheduling 

IoT devices, 
MEC, cloud 

3-layer 
offloading with 
DVFS 

Energy, 
execution 
time 

51.6% 
energy 
savings; 
86.6% 
faster 
executio
n 

Assumes 
static 
network 
performanc
e 

[55] EE in 
dense 6G 
IoT 

Power/sub
channel/us
er/RRU 
optimizatio
n 

6G RRUs, 
IoT radios 

JEERA 
algorithm; 
convex 
optimization 

EE, 
complexity 

33–37% 
better 
EE, 
reduced 
complex
ity 

Channel 
assumption 
complexity; 
no real 
validation 

[56] Remote 
checkpoin
ting for 
energy 
saving 

Software 
checkpointi
ng for 
memory 
preservatio
n 

IoT edge 
with volatile 
memory 

RPi + 
ESP8266 
prototype 

Energy vs. 
standby 
memory 

Lower 
energy 
vs local 
standby 

Network 
overhead 
can limit 
gains 
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Ref. Objective EE 
Techniques 

System 
Components 

Implementatio
n / Approaches 

Evaluation 
Metrics Results Limitations 

[57] EE 
routing 
for 
MIMO 
IoT in 5G 

Unequal 
clustering, 
probabilisti
c multi-hop 
routing 

MIMO-
enabled 
WSN 

CH selection, 
adaptive 
topology 

Lifetime, 
energy, 
delay, 
balance 

3× 
lifetime, 
–40% 
CH 
energy 

Simulation 
only; 
scalability 
concerns 

[58] EE 
comms 
for smart 
city IoT 

Duty 
cycling, 
power 
control, 
aggregation 

NB-IoT, 
LTE-M, 
App server 

Active/sleep 
modes, 
protocol 
optimization 

Energy use, 
duty cycle 

15–25% 
lower 
energy, 
25% via 
power 
control 

Scalability 
not 
addressed; 
partial 
validation 

[59] EE CH 
selection 
for IoT-
WSN 

Bio-
inspired 
CH 
selection by 
residual 
energy & 
distance 

Sensor 
nodes, CHs, 
Sink 

Two-phase: 
distance 
clustering, 
OOA CH 
election 

Lifetime, 
energy, 
PDR, 
overhead 

24% 
energy 
cut; 
78% 
more 
PDR 

Simulation 
only; static 
nodes; no 
security 

[60] EE & 
longevity 
in 
HWSNs 

Hybrid 
clustering 
with FFO 

Heterogene
ous sensor 
network 

LEACH-style 
clustering + 
fuzzy logic 
routing 

Lifetime, 
energy, loss, 
delay 

90.27% 
lifetime 
improve
ment 

No real 
validation; 
metrics 
unclear 

[61] Compress
ion for 
longer 
IoT 
device life 

Lossless 
data 
compressio
n (S-LZW, 
S-LEC) 

Cloud-based 
IoT sensing 
system 

MILP to 
minimize 
energy & 
latency 

Energy, 
lifetime, 
traffic 

40% 
energy 
savings; 
50% 
longer 
lifetime 

Overhead 
not 
analyzed; 
scalability 
limited 

 
Al-Kadhim and Al-Raweshidy [61] suggested an adaptive data compression 
scheme (ADCS) for cloud-based IoT networks to reduce transmitted data volume. 
It dynamically selects between Sensor Lempel-Ziv-Welch (S-LZW) and Sequential 
Lossless Entropy Compression (S-LEC) based on device processing capacity, 
battery level, and compression energy cost. Optimized to reduce power 
consumption in radio transmission and circuitry, simulations from a smart building 
setup show up to 40% power savings and a 50% increase in device lifetime 
compared to non-compression systems. Similarly, Memon et al. [62] presented the 
Energy-Efficient Fuzzy Management (EEFM) system, combining fuzzy logic with 
IoT-enabled VANETs to improve clustering efficiency. The routing algorithm 
applies fuzzy clustering with multi-hop communication and reduced beacon 
messaging. CH selection and packet rebroadcasting use fuzzy logic parameters like 
node distance, residual energy, neighbour count, traffic density, and packet 
redundancy. NS-2 simulations confirm superior energy use, lower delay, improved 
packet delivery, reduced control overhead, and extended network lifetime 
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compared to existing fuzzy-based approaches. In the same vein, Abdulzahra et al. 
[63] introduced the Energy-Efficient Fuzzy-Based Unequal Clustering with Sleep 
Scheduling (EFUCSS) protocol for IoT-based WSNs. Combining unequal 
clustering for balanced energy distribution, fuzzy logic for CH selection, and sleep 
scheduling to deactivate idle nodes, the protocol adapts to different node 
distributions and base station distances. Simulations show EFUCSS outperforms 
existing methods in energy efficiency and operational duration, making it a 
practical solution for remote deployments. 
 
Moreover, Merah et al. [64] proposed ESOM, an energy-efficient clustering 
protocol for IoT networks integrating self-organizing maps (SOM) with dynamic 
CH rotation. ESOM forms static clusters, initially selecting CHs based on 
proximity to the winning neuron, then rotating CHs in later rounds using residual 
energy and distance metrics to balance energy use and extend network lifespan. 
Simulations show ESOM outperforms LEACH-SOM in energy efficiency, though 
further research on multi-hop routing and collision avoidance could enhance 
performance. Similarly, Arafat [65] developed DECR, a distributed energy-efficient 
clustering and routing protocol for Wearable IoT-enabled WBANs for 
interference, user mobility, and battery constraints. It employs a two-hop 
neighbour-based clustering strategy and a modified GWO (MGWO) algorithm for 
CH selection and optimized routing. Additionally, an analytical model ensures 
balanced energy use through cluster sizing. Simulations indicate superior energy 
efficiency, network lifetime, and data reliability over MT-MAC and ALOC, 
demonstrating its suitability for dynamic health monitoring. Liu et al. [66] also 
presented EEGNBR, a routing protocol for UWSNs that eliminates node 
localization by using a distance-vector approach for efficient sink node paths. In 
the method, a concurrent relay selection mechanism enables multi-hop routing to 
reduce delays and ensure reliable transmission under mobility and communication 
challenges while conserving energy. Simulations show EEGNBR improves packet 
delivery ratio and end-to-end delay, with energy efficiency on par or better than 
existing protocols. Equally, Yao et al. [67] developed EERPMS, an energy-efficient 
clustering protocol for WSNs in precision agriculture. It applies multi-threshold 
image segmentation based on the Otsu algorithm, alongside a CH selection 
method considering residual energy and proximity to optimal locations. These 
techniques improve load distribution and network longevity. Simulations confirm 
lower energy use and extended network lifetime compared to RLEACH, 
CRPFCM, and FIGWO, reinforcing its viability for smart farming applications. 
 
Mohamed et al. [68] presented LO-Dedup, a low-overhead inline deduplication 
method to reduce energy use in Green IoT systems by eliminating redundant 
wireless transmissions. Using hashed fingerprints, LO-Dedup detects duplicate 
sensor data chunks and transmits only indices, reducing data size and power 
consumption. Experiments with Arduino and Raspberry Pi confirm significant 
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energy savings, especially for minimally varying sensor data, supporting real-time, 
energy-constrained IoT applications. In the same vein, Dogra et al. [69] suggested 
IMIMO-5G BEE, a routing and clustering protocol for IoT-enabled 5G WSNs 
using MIMO technology. It integrates hybrid clustering: single-hop and multi-hop 
communication, with CH selection via k-means clustering and a dynamic 
competition radius. An adaptive transmission interface mechanism optimizes 
energy utilization and quality of experience for various data types. Simulation 
results show a 30% energy reduction, extended network lifetime, improved 
coverage, and lower transmission delay compared to existing methods. Still on 
clustering, Mir et al. [70] developed DCOPA, a metaheuristic-driven distributed 
clustering protocol for IoT-based WSNs employing multiple-criteria decision-
making (MCDM) for CH selection, considering residual node energy and base 
station distance. Nodes self-elect as CHs using a timer weighted by these criteria, 
ensuring balanced energy use and optimized clustering radius. Simulations confirm 
superior energy efficiency, extended network lifetime, and enhanced scalability 
over LEACH and related protocols. In addition, Malik and Kushwah [71] 
presented EES-IA, a hybrid cross-technology communication protocol for IoT 
networks operating in the 2.4 GHz spectrum. ZigBee handles low-power control 
and wake-up signalling, while Wi-Fi ensures reliable data transmission. The system 
employs an Interference Avoidance (IA) algorithm based on packet error rate and 
link quality. Omnet++ simulations show that EES-IA reduces energy use and 
interference while improving throughput compared to Green IoT Gateway. 
 

Table 8. Summary of network-based optimized software-based EE methods 
Ref. Objective EE 

Techniques 
System 
Components  

Implementation 
/ Approaches 

Evaluation 
Metrics Results Limitations 

[62] EE, lifetime 
& QoS in 
VANETs 

Fuzzy CH 
selection, 
multi-hop 
routing 

VANET with 
IoT 

Density-based 
rebroadcasting; 
fuzzy CH 
selection 

Lifetime, 
PDR, QoS 

Improved 
lifetime, 
throughp
ut, lower 
delay 

High 
routing load 
at high 
speeds; 
fuzzy rule 
complexity; 
highway-
only test 

[63] Extend IoT 
lifetime via 
clustering 

Unequal 
clusters, 
fuzzy CH, 
duty cycling 

Sensor nodes, 
CHs, 
gateway, BS 

Python sim; 
fuzzy-based 
clustering 

Lifetime, 
energy, 
balance 

39.6%–
408.1% 
lifetime 
gain, less 
redundan
cy 

Assumes 
static, 
homogeneo
us nodes; 
ignores 
interference 

[64] EE & 
lifetime via 
SOM 
clustering 

Static 
clustering, 
dynamic 
CH 

IoT nodes, 
CHs, BS 

LEACH-based 
sim, varied 
distributions 

Energy, 
cluster 
quality, 
lifetime 

Better 
energy 
use vs 
LEACH-
SOM; 

Static initial 
clustering, 
single hop 
only; no 
deployment 



Journal of Information Systems and Informatics 
Vol. 7, No. 2, June 2025 

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882 

 

Bassey Isong, Kedibone Moeti | 1503 

Ref. Objective EE 
Techniques 

System 
Components  

Implementation 
/ Approaches 

Evaluation 
Metrics Results Limitations 

balanced, 
stable 

[65] EE 
clustering & 
routing for 
WBAN 

Adaptive 
clustering, 
routing 
optimizatio
n 

Wearable 
IoT, CHs, 
sink 

Compared to 
MT-MAC & 
ALOC 

PDR, 
delay, 
energy, 
overhead 

Higher 
PDR, 
lower 
delay, 
better 
energy 
use 

Initial info 
overhead; 
no real 
deployment 

[66] Routing for 
UWSNs 
(no 
localization) 

Adaptive 
routing, 
forwarding 
protection 

UW sensor 
nodes, sinks 

GUIDE routing 
(timeless 
forwarding) 

Delay, 
PDR, 
energy, 
lifetime 

Outperfor
ms DBR, 
DVOR; 
lower 
delay 

Relay 
selection 
complex; 
updating 
under 
mobility 

[67] EE routing 
for 
agriculture 
WSNs 

Residual-
energy-
aware 
clustering 

Sensor nodes, 
BS 

Energy model 
+ CH selection 

Energy, 
lifetime, 
load 
balance 

64.5% 
energy 
savings; 
57% 
longer 
FDN 
lifetime 

Static BS; 
may not 
scale well 
computatio
nally 

[68] Reduce IoT 
transmissio
n energy 

Inline data 
deduplicatio
n 

WSN, 
gateway, 
metadata 
server 

JSON 
deduplication 
prototype 

Size, power 56B→8B; 
1.808W→
1.793W 

Small 
hardware 
scale; no 
multi-
sensor test 

[69] Routing for 
IoT w/ 5G 
& MIMO 

MIMO-
optimized 
clustering, 
energy-
aware 
routing 

IoT nodes, 
BS, MIMO 
devices 

NS-3 sim; 
cluster + QoE 
routing 

Energy, 
delay, 
QoE, 
coverage 

30% less 
energy, 
better 
lifetime 

No security; 
interface 
selection 
complexity 

[70] Distributed 
EE 
clustering 
for WSN 

Energy-
balanced 
clustering 

Sensor nodes, 
BS 

Timer-based 
CH; optimized 
scheduling 

Energy, 
lifetime, 
CH 
election 

LND 
1272 vs. 
1055 
(LEACH)
; less 
energy 
used 

No real 
validation; 
timer 
complexity 

[71] EE 
scheduling 
for multi-
radio IoT 

Interferenc
e-aware, 
mixed 
proactive/r
eactive 

IoT with 
ZigBee/Wi-
Fi, gateways 

Omnet++ sim 
(30 nodes) 

Energy, 
PER, BER, 
throughput 

Lower 
energy, 
fewer 
errors, 
more 

Stationary 
gateway; no 
PHY-layer 
tests 
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Ref. Objective EE 
Techniques 

System 
Components  

Implementation 
/ Approaches 

Evaluation 
Metrics Results Limitations 

throughp
ut 

 
 
8) Network-Software-based Optimized with Edge Computing and 

Security 
 
This subsection explores the intersection of software-based techniques, network 
optimization, and EC to improve EE in IoT systems. While these smart algorithms 
dynamically adjust power use, optimized networks reduce unnecessary 
communication, and local data processing minimizes delays and cloud dependence, 
with integrated security where needed. Tables 9 and 10 summarize the important 
studies. Algarni et al. [72] suggested a two-level distributed EC architecture 
addressing scalability, latency, and EE challenges in dense IoT networks. 
Integrating fog computing and multi-access EC (MEC), allows dynamic task 
offloading from resource-constrained devices to nearby fog nodes or MEC servers. 
By using the Salp swarm optimizer (SSO) for resource allocation, it balances 
computational and communication loads to reduce energy consumption and 
latency. Experimental validation on a real IoT testbed confirms superior 
performance over traditional IoT networks, though mobility effects remain a 
challenge. Periasamy et al. [73] equally developed ERAM-EE, an energy-efficient 
algorithm for resource allocation and management in fog-enabled IoT networks. 
Fog computing decentralizes processing, reducing latency and enhancing 
responsiveness. ERAM-EE tackles energy constraints, uneven traffic loads, and 
unstable wireless connections. Using a channel gain matrix, it assigns IoT devices 
to fog nodes (FNs) via resource blocks (RBs), optimizing task offloading and 
energy use while avoiding congestion. Simulations confirm its superiority over OR-
EPA, RR-OPA, and EE-CN in energy savings and speed. 
 
Feng et al. [74] presented a collaborative offloading strategy for IoT systems using 
NOMA-enabled fog computing, employing mixed-integer nonlinear programming 
(MINLP) to minimize total energy use while meeting delay constraints. Tasks are 
loaded to pairs of fog nodes using NOMA for simultaneous transmission, reducing 
the overall energy costs. The problem is split into fog node selection: handled via 
a weighted bipartite graph and the Hungarian algorithm, and resource allocation, 
addressed through convex reformulation with the MCTC algorithm. Simulations 
show MCTC outperforms OMA, and NOMA without pairing, and full offloading, 
achieving up to 85% energy savings. Similarly, Liu et al. [75] optimized EE in UAV-
based IoT networks lacking ground infrastructure, proposing a resource 
optimization framework for multi-UAV systems where UAVs serve as aerial base 
stations. The framework maximizes minimum EE by jointly optimizing 
communication scheduling, power allocation, and flight paths. Due to the non-
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convex nature of the issue, it is decomposed into three sub-problems and solved 
iteratively using the Dinkelbach method and subsequent convex approximation. 
Simulations show improved EE, balanced UAV energy distribution, and enhanced 
network sustainability and fairness. On the same note, Wu et al. [76] presented 
DAEE, an online task offloading algorithm for delay-sensitive and compute-
intensive (DSCI) tasks in IIoT systems using MEC. They formulated the 
offloading problem via perturbed Lyapunov optimization to minimize long-term 
energy use while maintaining task deadlines. Additionally, virtual queue 
management dynamically adjusts offloading decisions based on network state and 
backlog data. Simulations demonstrate superior EE and latency control compared 
to greedy energy-saving approaches, particularly under high workload and mobility 
conditions. 
 

Table 9. Summary of network-software-based methods optimized with EC & 
security 

Ref. Objective EE 
Techniques 

System 
Components  

Implementation 
/ Approaches 

Evaluation 
Metrics Results Limitations 

[72] Efficient 
resource 
allocation 
in dense 
IoT 

Hierarchical 
task 
offloading, 
dynamic 
energy use 

IoT end 
devices, fog 
nodes, MEC 
servers 

Multi-tier 
optimization via 
SSO 

Energy use, 
latency, 
congestion 
reduction 

19% 
energy 
savings, 
86% 
latency 
reduction 

Mobility 
effects not 
fully studied 

[73] Maximize 
EE in 
Fog-IoT 
networks 

Energy-aware 
task 
offloading, 
resource 
balancing 

IoT devices, 
Fog Nodes, 
RBs, channel 
matrix 

Simulated 
evaluation vs. 
OR-EPA, RR-
OPA, EE-CN 

Efficiency 
(bit/J), 
response 
time, 
utilization, 
complexity 

Up to 18 
Mbit/J 
efficiency 
gain; 
reduced 
processin
g time 

Limited 
dynamic IoT 
device 
handling; 
memory 
constraints 

[74] Minimize 
energy in 
IoT via 
collaborati
ve 
offloading 

Joint 
offloading 
optimization 
using NOMA 
& TDMA 

IoT task 
nodes, fog 
nodes, CPUs 

MCTC algorithm 
for fog selection 
& resource 
allocation 

Total 
energy use, 
latency, task 
size, 
computatio
n cycles 

56.88%-
84.78% 
lower 
energy vs 
baseline 

Assumes 
ideal 
CSI/SIC; 
limited 
scalability in 
dynamic 
networks 

[75] Maximize 
UAV EE 
via 
trajectory 
& 
scheduling 
optimizati
on 

Joint 
communicati
on scheduling 
& UAV 
trajectory 
planning 

Multi-UAVs 
as base 
stations, 
ground IoT 
nodes 

Successive 
convex 
approximation 

UAV 
energy use, 
fairness, 
throughput 

Improved 
fairness & 
EE 

Assumes 
ideal LoS; 
lacks real-
world tests; 
computationa
lly complex 
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Ref. Objective EE 
Techniques 

System 
Components  

Implementation 
/ Approaches 

Evaluation 
Metrics Results Limitations 

[76] Optimize 
MEC 
energy use 
for delay-
sensitive 
IIoT tasks 

Dynamic 
scheduling, 
network-
aware 
offloading 

IIoT devices, 
wireless links, 
MEC servers 

Mobility-aware 
optimization 
framework 

Energy, 
queue 
stability, 
delay 
guarantees 

Outperfor
ms greedy 
schemes; 
adaptive 
to 
workload 
changes 

Single edge 
server 
assumed; no 
real-world 
validation 

[77] Improve 
EE and 
security in 
MFBC for 
IoT 

DVFS, 
energy-aware 
scheduling, 
EC, 
lightweight 
algorithms 

Energy 
model, 
job/VM 
scheduling, 
blockchain 

Java simulation 
on IBM z13 
(2200 VMs, 40 
servers) 

Energy use, 
latency, 
throughput, 
attack 
detection 

379.5J vs 
427J+ 
energy; 
0.165s vs 
0.172s+ 
latency 

Less optimal 
for small 
packets; 
blockchain 
overhead 

 
Beyond software and network optimization, security and reliability are also 
integrated to enhance EE. Key studies in this domain are summarized in Table 9. 
Razaque et al. [77] proposed EESH, a hybrid algorithm for mobile fog-based cloud 
(MFBC) IoT systems, combining voltage scaling for energy savings with 
blockchain-based malicious data detection (MDD). The algorithm utilizes energy 
estimation, task scheduling, and parallel processing to optimize resource 
utilization. Simulations under varied workloads show improved EE, latency, and 
security by effectively identifying malicious data blocks. Accordingly, Salim et al. 
[78] developed SEEDGT, a secure and energy-efficient data-gathering technique 
for IoT-based WSNs. It integrates trust-based clustering, homomorphic 
encryption for secure aggregation, and a modified compressive sensing (CS) 
method to minimize data volume and energy use. Operating in three phases: cluster 
formation, network operation, and reconfiguration, it strengthens security while 
adaptive compression reduces communication overhead. Simulations demonstrate 
increased network lifetime and EE, along with strong security protections. 
Likewise, Philip and Singh [79] developed TPSS, an adaptive LoRaWAN-based 
communication protocol for dynamic water monitoring applications. It extends 
battery life by adjusting transmit power and spreading factor based on node 
distance. Their study also includes carbon footprint analysis, validated through 
analytical modelling and real-world testing. Results indicate that 62% of energy 
savings near gateways and an 8.6 kg per node reduction in carbon emissions while 
maintaining communication reliability. 
 
Sankaran and Kim [80] proposed a secure, energy-efficient data transmission 
framework for IIoT, managing complex, large-scale sensor data. It combines 
multi-scale grasshopper optimization (GOA) and robust multi-cascaded CNN 
(RMC-CNN) for anomaly detection, it employs a dynamic honeypot-based 
encryption algorithm (DHEA) for data security and blockchain for decentralized 
key management. Experiments confirm superior accuracy, throughput, latency, 
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and attack detection compared to existing methods. Nagaraju et al. [81] equally 
suggested a unified protocol for heterogeneous IoT-enabled WSNs, tackling EE, 
security, and data management. It combines secure multipath routing (MLRP), 
energy optimization with load balancing (H-TEEN), and enhanced data storage 
(U-DSP). NS-2 simulations show superior performance over LEACH, CCBRP, 
and PEGASIS, achieving a 25% reduction in end-to-end delay, 20% higher 
throughput, and a 35% increase in network lifetime, energy use, and storage 
capacity. In another study, Sharma et al. [82] proposed MHSEER, a meta-heuristic 
secure and energy-efficient routing protocol for WSNs in IIoT settings. It 
combines meta-heuristic routing with lightweight encryption using Counter-
Encryption Mode (CEM). With this, routing decisions consider hop count, 
connection integrity, and residual energy, helping to manage node depletion and 
maintain stable communication. MATLAB simulations demonstrate 95.81% 
throughput, a 5.12% packet drop ratio, and low energy utilization, showing 
effective encryption and route maintenance. 
 
Asaithambi et al. [83] tackled high energy use, single points of failure, and security 
gaps in traditional IIoT deployments. Their approach integrates decentralized 
blockchain for identity and data management with SDN for centralized control 
and traffic optimization, improving security and network efficiency. An energy-
aware CH selection algorithm extends the device lifespan using residual energy 
metrics. Simulated using Mininet-WiFi and Vechain blockchain, results show 
enhanced throughput, reduced latency, and lower energy use compared to existing 
SDN models. Similarly, Swathi et al. [84] developed a unified system for EE and 
fault tolerance in IoT-enabled WSNs. Integrating the ANFIS Reptile Optimization 
Algorithm (AROA) for inter-cluster routing and Tuned Supervision-Based Fault 
Diagnosis (TSFD) for fault detection, it optimizes routing via a hybrid AROA-
based Accessibility Index (AI) considering residual energy, response time, and 
node activity. MATLAB simulations show a 72% energy reduction, 52% extended 
network lifetime, and 97% fault detection accuracy. 
 
Table 10. Summary of network-software-based methods Optimized with EC & 

security 

Ref. Objective EE 
Techniques 

System 
Components  

Implementation 
/ Approaches 

Evaluation 
Metrics Results Limitations 

[78] Secure & EE 
data gathering 
in IoT WSNs 

Trust-based 
clustering, 
encrypted 
aggregation, 
adaptive 
compression 

IoT sensors, 
CHs, BS 

SEEDGT 
simulation with 
clustering 

Network 
lifetime, 
energy per 
round, alive 
nodes 

Extended 
lifetime with 
secure 
aggregation, 
reduced 
energy 

No real-
world 
validation; 
trust-weight 
tuning 
complexity 

[79] TPSS for 
dynamic LoRa 

Adaptive 
transmit 
power & 

LoRaWAN 
end-nodes, 

Field tests in 
reservoir 

Energy 
savings, 
reliability, 

62% energy 
savings near 
gateway; 38% 

Limited EH 
integration; 
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Ref. Objective EE 
Techniques 

System 
Components  

Implementation 
/ Approaches 

Evaluation 
Metrics Results Limitations 

nodes in water 
monitoring 

spreading 
factor 

gateway, water 
sensors 

carbon 
footprint 

far; carbon 
reduced 8.6 
kg/node 

environment 
sensitivity 

[80] EE & secure 
data 
transmission 
in IIoT 

Energy-
aware 
optimization, 
anomaly 
detection, 
secure 
encryption 

IIoT sensors, 
optimization 
module, 
blockchain key 
storage 

GOA 
optimization, 
RMC-CNN 
attack detection, 
dynamic 
encryption 

Accuracy, 
precision, 
recall, 
throughput, 
latency 

RMC-CNN 
99.2% 
accuracy; 
encryption 
improves 
security & 
Transmission 

Limited real-
time 
validation; 
encryption 
complexity 
issues 

[81] Secure EE 
routing for 
heterogeneous 
WSNs 

Secure 
routing, 
hybrid 
clustering, 
distributed 
storage 

Heterogeneous 
sensors, BS, 
IoT sources 

Multipath 
routing, Hybrid-
TEEN clustering, 
U-DSP storage 

Delay, 
throughput, 
energy, 
lifetime, 
storage 

25% delay 
reduction; 
20% 
throughput 
gain; 35% 
lifetime 
extension 

Protocol 
complexity; 
no real-
world 
validation 

[82] EE & secure 
routing for 
IIoT WSNs 

Optimized 
routing, 
lightweight 
encryption 

IIoT sensor 
nodes, BS, 
encrypted 
routing 
modules 

MATLAB 
simulation of 
routing & 
Encryption 

Throughput, 
PDR, delay, 
energy, 
faulty paths 

95.81% 
throughput; 
5.12% PDR; 
0.10 ms delay 

Limited real-
world 
validation; 
compatibility 
concerns 

[84] EE inter-
cluster routing 
& fault 
management 

AI-based 
adaptive 
routing & 
fault 
tolerance 

Cluster leaders, 
members, sink, 
fault modules 

MATLAB sim 
(1000 nodes) 

Energy 
intake, 
lifetime, 
stability, 
forwarding 
time, 
accuracy 

72% energy 
intake 
reduction; 
52% lifetime 
extension; 
97% fault 
detection 

Strong 
integration; 
lacks real 
deployment 

[83] EE & secure 
SDN for IIoT 
networks 

CH selection 
via SDN 
energy 
optimization 

SDN 
controllers, 
IoT devices, 
blockchain 
ledger 

Mininet-WiFi 
emulator; 
Vechain 
blockchain 

Energy use, 
latency, 
throughput 

Reduced 
energy, 
latency; 
improved 
throughput 

Simulation-
based; 
blockchain 
overhead 
untested 

 
9) Network-software-based Methods with DSEM  
 
This hybrid technique integrates network optimization with DSEM to enhance EE 
by aligning consumption with real-time grid conditions while ensuring reliable, 
low-latency communication. DSEM reduces peak demand and supports adaptive 
energy use, while network optimization minimizes communication overhead for 
efficient data exchange. Table 11 provides a summary of the important studies. Ali 
et al. [85] developed REEFSM, a reliable and energy-efficient framework with sink 
mobility for UWSNs to deal with energy constraints and unreliable data 
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transmission. The system utilizes a segmented network architecture with 
strategically placed mobile sinks, reducing redundant data forwarding, and 
optimizing sensor activity and communication. Additionally, adaptive duty cycling, 
neighbour discovery, and intelligent packet forwarding improve efficiency. 
Simulations show REEFSM outperforms EERBCR and DEADS, reducing energy 
use by up to 43%, improving data reliability by 35%, and ensuring zero dead nodes 
with minimal packet loss. Equally, Yarinezhad et al. [86] proposed RTG, a routing 
protocol for green IoT networks using mobile sinks to improve EE, extend 
network lifetime, and reduce end-to-end delay. It focuses on low sensor node 
energy, hot-spot issues, and routing complexities from sink mobility. Accordingly, 
RTG divides the network into an inner zone using tree-based routing for fast 
updates and EE, and an outer zone with improved geographic routing for balanced 
energy use and prevent loops. Simulations confirm superior lifetime, throughput, 
and lower delay compared to existing protocols. 
 
DSEM, a software-based technique, is integrated with AI-driven methods to 
dynamically adjust power usage, predict demand fluctuations, and optimize energy 
distribution. Table 10 summarizes key studies. Azizi et al. [87] addressed 
scheduling challenges for delay-sensitive, heterogeneous IoT tasks in fog 
computing environments with limited resources. They proposed two semi-greedy 
heuristic algorithms, Priority-aware Semi-Greedy (PSG) and PSG with Multistart 
(PSG-M), which prioritize tasks based on deadlines while estimating energy 
consumption to guide allocation. These methods minimize deadline violations 
without increasing energy use. Simulations confirm superior task completion and 
reduced violation times over existing approaches, showcasing the combined 
benefits of software-based energy management, EC, and DSEM. Hazra et al. [88] 
proposed EaDO, an energy-aware data offloading technique for IIoT sensor 
networks to deal with challenges in handling delay-sensitive emergency data. It 
combines fog computing with two strategies: Emergency-aware Scheduling (EaS) 
using a multilevel feedback queue for prioritization, and Energy-aware Offloading 
(EaO) utilizing Hall’s theorem for optimal task allocation. The system reduces total 
energy use, queuing delays, and CO₂ emissions more effectively than existing 
methods while maintaining fair energy distribution through simulations. 
 
Table 11. Summary of DSEM with Network-based and Software-based methods 

Ref. Objective EE 
Techniques 

System 
Components 

Implementation 
/ Approaches 

Evaluation 
Metrics Results Limitations 

[85] Address 
energy 
constraints 
and 
unreliable 
data in 
UWSNs 

Mobile sink 
deployment, 
duty cycling, 
wake/sleep 
scheduling 

Underwater 
sensor nodes, 
mobile sink 
regions 

Horizontal 
mobile sink 
movement; 
optimized packet 
forwarding 

Energy 
consumption, 
PDR, packet 
drop rate, 
network 
lifetime 

43% 
lower 
energy 
use; 35% 
higher 
data 
reliability; 

Discrepancies 
in packet 
drop data; 
limited sink 
mobility; no 
real-world 
validation 
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Ref. Objective EE 
Techniques 

System 
Components 

Implementation 
/ Approaches 

Evaluation 
Metrics Results Limitations 

zero dead 
nodes 

[86] Energy-
efficient 
routing to 
prolong 
IoT 
network 
lifetime 
with mobile 
sinks 

Energy 
balancing via 
routing; 
mobile sink 
load 
distribution 

IoT sensor 
nodes, mobile 
sink, routing 
mechanisms 

Partitioning into 
InSection & 
OutSection; 
"Improved 
Geographic" and 
tree-based 
routing. 

Network 
lifetime, 
delay, 
throughput, 
energy 
consumption 

RTG 
achieved 
longest 
lifetime, 
highest 
throughp
ut, lowest 
delay 

Limited to 
single mobile 
sink; 
simulation-
only 
evaluation 

[87] Minimize 
IoT task 
energy and 
meet 
deadlines in 
fog 
computing 

Priority-
aware 
scheduling 
balancing 
energy and 
deadlines 

IoT devices, 
fog nodes, 
cloud 
infrastructure 

MINLP 
modelling and 
heuristic 
implementations 

Deadline 
satisfaction, 
violation 
time, energy 
use 

97.6% 
reduction 
in 
deadline 
violation; 
optimized 
energy 
use 

Assumes 
single task 
per fog node; 
lacks fault 
tolerance 

[88] Minimize 
energy and 
latency in 
industrial 
IoT data 
offloading 

Fog 
computing 
offloading 
with 
emergency 
task 
prioritization 

Industrial IoT 
sensors, 
fog/cloud 
nodes 

Hall’s theorem-
based matching; 
queueing 
optimization 

Queueing 
delay, energy 
use, CO2 
emissions 

23-30% 
lower 
energy 
use; 
improved 
fairness 
and CO2 
reduction 

Static 
task/device 
assumptions; 
complex real-
time 
deployment 

 
10) Hardware-based Methods Optimized with REI, Software, Network 

and AI Ap 
 
This section presents another hybrid EE approach that integrates REI with energy-
efficient hardware to build sustainable, resilient IoT energy systems. REI considers 
environmental impacts such as carbon emissions and fossil fuel dependency using 
solar, wind, and other clean sources. Hardware-based methods like low-power 
microcontrollers and EH sensors, minimize energy use, extend device lifespan, and 
support smart grids and IoT applications. Tables 12 and 13 summarize the 
important studies. Hnatiuc et al. [89] presented an autonomous solar-powered IoT 
system with LoRaWAN for vineyard monitoring. The low-cost setup combines 
renewable EH with hardware and software optimizations. Experimental results 
show that reducing GPS update frequency and enabling idle modes lowers energy 
use. Field tests confirm six days of autonomy without solar input, demonstrating 
its suitability for off-grid deployments. Similarly, Wang et al. [90] designed a low-
power, battery-less sensor for Agri-IoT applications, integrating on-chip sensor 
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fusion, RF EH, and event-driven BLE communication. Its SCMSS and DAFE 
circuits sense temperature, humidity, and soil moisture with just 4.8 µW power. 
Manufactured in 65-nm CMOS technology, the sensor eliminates battery 
replacements, reducing environmental impact. Simulations demonstrate reliable 
accuracy, making it viable for scalable smart agriculture. Shukla et al. [91] equally 
developed a unified framework combining processing-in-memory (PIM) with 
kinetic EH (KEH) for energy-efficient ML in IoT and edge devices. LUT-based 
in-memory computation minimizes data movement, while piezoelectric KEH 
provides intermittent power. Experimental results show that 8-bit fixed-point 
inference maintains accuracy while enhancing EE. Accordingly, Haroun et al. [98] 
designed a battery-less wireless sensor transmission unit (WSTx) powered by 
indoor solar EH. Using polycrystalline photovoltaic cells, MPPT-based PMU, and 
LoRa, the system enables efficient low-power operation. Firmware optimizations, 
including deep sleep cycles and sensor power management, extend operation under 
minimal lighting. However, supercapacitor self-discharge and limited sensor 
compatibility may affect adaptability. 

 
Table 12. Summary of hardware-based optimisation with REI, Software, 

network, and AI 

Ref. Objective EE 
Techniques 

System 
Components 

Implementation 
/ Approaches 

Evaluation 
Metrics Results Limitations 

[89] Autonomous 
solar-powered 
IoT 
deployment in 
agriculture 

Hardware 
(solar panel, 
battery, 
PWM 
controller); 
software 
optimization 

Solar panel, 
PWM 
controller, 
battery, 
LoRaWAN 
nodes, Arduino 

Real-world field 
deployment 

Power 
consumption, 
autonomy, 
connectivity 
reliability 

6.83 days 
autonomy; 
software 
optimization 
improved 
efficiency 

Single 
application 
case; lacks 
adaptive load 
response 

[90] Low-power 
battery-less IoT 
sensor for 
agriculture 

RF EH; 
event-driven 
BLE 
transmission 

Capacitive 
sensors, shared 
DAFE, BLE, 
RF harvester 

65-nm CMOS 
fabrication; BLE 
at 2.4 GHz 

Power use, 
accuracy, 
BLE TX 
range, EH 
performance 

Ultra-low 
power (4.8 
µW); 
battery-less 
operation; 
accurate 
sensing 

Short BLE 
range (12 m); 
dependency on 
2.4 GHz RF 
sources 

[91] Reduce ML 
energy use on 
IoT/edge 
devices 

 PIM, KEH LUT-based 
PIM cores, 
piezoelectric 
KEH devices 

Fixed-point 
computation; 
CNN 
benchmarks 

Energy 
consumption, 
packet rate, 
cluster energy 
deviation 

1.9 mW 
KEH in 5 s; 
high 
inference 
efficiency 

No hardware 
prototype; 
energy 
depends on 
motion 

[92] Energy-
efficient 
protocol for 
large-scale IoT 
WSNs 

Energy-
aware 
routing, 
hardware 
EH, 

Heterogeneous 
sensor nodes, 
zone 
aggregators, 
EH relay nodes 

Hybrid offline-
online threshold; 
MSWE heuristic 
optimization 

Energy 
savings, 
lifetime, data 
transmission, 
complexity 

29% energy 
savings, 68% 
lifetime 
extension, 
improved 

Computational 
overhead; 
increased delay 
in large 
networks 
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Ref. Objective EE 
Techniques 

System 
Components 

Implementation 
/ Approaches 

Evaluation 
Metrics Results Limitations 

computation 
filtering 

load 
balancing 

[93] Secure energy-
efficient 
communication 
in IoT 

Battery-
aware source 
selection, 
EH, secure 
jamming 

IoT sensors, 
relays, 
destination 
node 

Monte Carlo 
simulation; 
Markov analysis 

Secrecy 
throughput, 
energy failure 
rate, stability 

Higher 
secrecy & 
efficiency vs. 
traditional 
methods 

Latency-
security trade-
off; complex 
node 
interactions 

 
In terms of hardware-based methods and network optimization, while low-power 
processors and optimized sensors reduce device energy use, network optimization 
minimizes latency, redundant communication, and transmission overhead using 
energy-aware routing. Table 11 also provides a summary of key studies. Abdul-
Qawy et al. [92] proposed TESEES, a reactive, energy-efficient protocol for large-
scale, heterogeneous IoT-based WSNs. Building on SEES, it introduces a zone-
based architecture with event-driven data reporting and transmission thresholds to 
reduce redundancy and conserve node energy. By joining a threshold-based 
minimum-cost cross-layer transmission (TMCCT) algorithm and energy-
harvesting relay nodes, TESEES improves scalability and load balancing. 
Simulations confirm 29% energy savings, a 68% increase in network lifetime, and 
enhanced data handling, making it suitable for dense environments. Similarly, 
Gouissem et al. [93] focused secure and energy-efficient communication scheme 
for cooperative IoT networks, incorporating physical layer security, artificial 
jamming, and energy harvesting (EH). A battery-aware source selection 
mechanism optimizes energy use among relay nodes, while amplify-and-forward 
(AF) transmission with jamming protects against eavesdropping and supports EH 
at sensor nodes. Monte Carlo simulations and Markov analysis demonstrate 
improvements in secrecy capacity, EE, and system stability as more sources 
cooperate.  
 
Furthermore, REI is combined with software-driven and network optimization 
methods to enhance EE, connectivity, and sustainability in IoT-driven energy 
systems. Table 11 provides a summary of key studies. Islam et al. [94] developed a 
framework for deep neural network (DNN) inference on EH devices to deal with 
power and computational constraints. It utilizes Low Energy Adaptation (LEA) to 
modify model complexity based on available power and Checkpoint-Free 
Intermittent (CLI) inference to preserve computational state across power failures 
with minimal energy use. A consistency-aware execution mechanism ensures 
correctness under intermittent conditions. Experiments on a low-power 
microcontroller confirm improved memory efficiency and reliable DNN inference 
where traditional methods fail. Kang and Lim [95] also proposed the Energy 
Intelligence Platform Module (EIPM) to mitigate solar-powered system challenges, 
particularly unpredictable ambient energy, and capacitor depletion. The lightweight 
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software-hardware system manages EH in resource-constrained IoT devices via 
energy prediction, task scheduling, and state checkpoints. A two-state Markov 
model forecasts energy availability, dynamically adjusting task execution and 
selectively saving device states to reduce information loss. Simulations validate its 
effectiveness. 
 
In another study, hybrid access points (H-APs) with renewable energy sources are 
suggested [96]. Cao et al. [96] introduced a joint optimization framework for 
improving EE in simultaneous wireless information and power transfer (SWIPT)-
enabled IoT networks. To deal with intermittent power at H-APs and terminals, 
they devise a non-linear mixed-integer problem utilizing power allocation, time-
switching, and energy cooperation among H-APs. Additionally, a two-stage 
solution applies iterative methods for power and time-switching and a many-to-
many matching algorithm for energy sharing. Simulations confirm EE gains and 
reduced consumption, especially in dense environments, outperforming baseline 
and PSO-based models. Similarly, Bharathi et al. [97] developed EMEECP-IoT, 
an enhanced multitier energy-efficient clustering protocol for IoT-based WSNs, 
targeting EE, security, and network lifespan. It integrates a three-layer clustering 
architecture with wireless EH and a security mechanism for detecting rogue nodes. 
Clustering and routing decisions leverage PSO, while transmission power control 
and a lightweight encryption scheme (TBSA) minimize energy use. Simulations 
confirm a 37% increase in network lifespan, a 21% improvement in energy 
efficiency, and enhanced data throughput compared to existing techniques. 

 
Table 13. Summary of hardware-based optimisation with REI, Software, 

network, and AI 

Ref Objective EE 
Techniques 

System 
Components 

Implementation 
/ Approaches 

Evaluation 
Metrics Results Limitations 

[94] Efficient 
DNN 
inference 
on energy-
harvesting 
devices 

Hardware 
energy 
adaptation; 
intermittent 
software 
execution 

MSP430 
MCU, custom 
DNNs, non-
volatile 
FRAM 
memory 

Ultra-low-power 
MCU 
implementation; 
memory-
optimized DNNs 

Inference 
latency, 
memory 
efficiency, 
inference 
success rate 

1.65× lower 
latency; 
memory-
efficient 
execution 

Limited 
scalability; 
small DNN 
models only 

[95] Mitigate 
power 
depletion in 
EH-IoT 
devices 

Predictive 
scheduling, 
checkpointing, 
capacitor 
voltage 
monitoring 

Solar-powered 
wireless 
sensor node 

Markov-based 
scheduling and 
task execution 
optimization 

Task 
execution 
rate, power 
depletion 
events, 
uptime 

93.4% fewer 
depletion 
events; 15.6× 
uptime 
increase 

Increased 
execution 
latency; 
depends on 
prediction 
accuracy 

[96] Maximize 
energy 
efficiency 
with 
SWIPT & 

SWIPT-
enabled RF 
harvesting; 
smart grid 

H-APs, IoT 
terminals, 
smart grid 

Dinkelbach 
alternating 
iteration; many-
to-many 

Energy 
efficiency, 
consumption, 
convergence 
time 

Outperforms 
PSO & rate-
maximization; 
enables 
energy reuse 

Assumes 
perfect CSI; 
relies on 
smart grid; 
lacks 
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Ref Objective EE 
Techniques 

System 
Components 

Implementation 
/ Approaches 

Evaluation 
Metrics Results Limitations 

energy 
cooperation 

energy 
cooperation 

cooperation 
matching 

economic 
trading 
model 

[97] Enhance 
energy 
efficiency & 
security in 
IoT WSNs 

Clustering, 
power control, 
wireless EH, 
encryption 

Three-layer 
cluster WSN 
with security 
integration 

PSO for 
clustering/path 
optimization; 
TBSA encryption 

Network 
lifetime, 
throughput, 
latency, 
packet loss 

35% longer 
lifetime; 21% 
energy 
reduction 

Ignores 
node 
mobility; 
complex 
multi-tier 
framework 

[98] Develop 
ultra-low-
power 
WSN 
device 

Solar 
harvesting; 
low-power 
firmware 

Polycrystalline 
PV, MCU, 
LoRa module 

MPPT power 
extraction; sensor 
sleep cycles 

Power 
harvested, 
throughput, 
energy per 
inference, 
delay, 
accuracy 

85.7% 
efficiency; ~6 
hours 
continuous 
operation 

Limited 
indoor 
harvested 
power; 
firmware 
complexity 

 
 
3.2. Discussion And Future Directions 

 
3.2.1. Discussion 
 
EE is a critical factor in the development of IoT and WSNs since it extends 
network lifetime and influences operational costs and system reliability. This study 
analysed various EE techniques such as AI-based optimization, system-level 
strategies, clustering routing, secure transmission protocols, and hardware 
innovations. This is summarized in Tables 2 to 13. The findings are presented 
methodologically, performance-wise, and comparatively showing the important 
trade-offs and future research directions for optimising energy use in IoT 
ecosystems.  We considered publications from 2021 to 2025 and presented the 
summary of the years in terms of journals and conference papers. As shown in 
Figure 4, research on energy-efficient IoT systems topped in 2022, particularly in 
journals indicating increased investment and technological progress. Journal 
output remains stable while conference publications fluctuated, peaking in 2023 
and 2024 before a slight decline. The trends suggest a shift towards more in-depth 
studies in journals, with timely insights from conferences. During this period, 
advances in AI-based optimization, edge, and fog computing, and EH-supported 
sustainable IoT deployments. In addition, secure clustering, efficient routing, and 
blockchain-based security improved system trust and resilience. By 2025, although 
ongoing, research has turned to refining the methods of integrating hardware 
efficiency, software intelligence and network optimization to allow scalable, 
sustainable IoT infrastructures. 
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Figure 4. Publication trends 

 
In terms of the findings, our analysis shows a growing trend towards integrated, 
multi-objective routing and cross-layer energy optimizations, with significant 
progress in minimizing energy use, network lifetime and improving security 
mechanisms. Figure 5 shows energy savings across randomly selected studies due 
to the proposed EE techniques. In particular, the analysis reveals that AI-based 
optimization enhances energy management in IoT and WSN through dynamic 
load forecasting, autonomous scheduling, and adaptive routing. Studies such as 
[22] and [23] employed multi-agent RL and transformer-based algorithms, 
achieving 40–60% energy savings in urban environments. Similarly, [26] utilized 
MDP smart routing but faced computational overhead in real-world deployments. 
Energy-aware RL protocols like Q-learning, explored in [24], [25], and [26], 
improved network lifetime and reduced packet loss in constrained IIoT and WSN 
settings. UAV-assisted decision-making using FL, as seen in [39] and [58], cut 
energy use by 25% while enhancing efficiency. Fuzzy logic and ANN-based 
optimization, adopted in [74] and [79], further reduced costs across various IoT 
applications. However, AI-based methods introduce computational overhead, 
rendering DRL impractical for low-power IoT due to processing demands. RL-
based scheduling in [53] and [40] increases computational costs, while DRL 
approaches in [22] and [23] require significant memory and power. Simple rule-
based methods, including those in [47] and [48], are less adaptive but effective in 
stable conditions. Despite advancements, high computational requirements, 
extensive training data reliance, and scalability challenges remain key barriers to 
AI-driven energy optimization in practice. 
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Figure 5. Energy savings across studies 

 
System-level energy optimization in IoT relies on multi-layer techniques integrating 
offloading, compression, and security via blockchain to minimize energy use. 
Hierarchical offloading frameworks, such as those in [54] and [72], combine fog 
computing, MEC, and DVFS to dynamically balance computing loads, achieving 
19–51.6% energy savings. These methods perform well in static environments but 
face challenges in dynamic networks. Data compression techniques in [18] and [21] 
improve transmission efficiency, with Huffman coding and lossless compression 
reducing energy costs by 77%. Edge-based federated learning (FL) [39], [40] 
enhances decentralized resource allocation, cutting transmission energy by 25%. 
Studies [19] and [20] integrate predictive security, blockchain, and hardware-aware 
controls, improving energy efficiency (EE) by ~29%. However, blockchain 
encryption adds processing costs and hierarchical frameworks require fine-tuning 
for optimal performance. While cross-layer optimizations enhance system stability, 
they introduce computational overhead and require careful deployment. 
 
Moreover, communication-level strategies extend node lifetimes in IoT-based 
WSNs and underwater deployments [85], [86]. Duty cycling, transmit power 
control, and adaptive modulation are widely used, alongside clustering-based 
routing techniques that minimize redundant transmissions and optimize resources 
[86], [97]. Studies such as [32], [33], [52], [74], [76], employ metaheuristic and bio-
inspired clustering algorithms, including GWO, MOA, FFO, DA, SSO, PSO, etc. 
to improve CH selection and EE, achieving a +333.51% stability improvement. 
Hybrid clustering frameworks in [53] and [59] combine fuzzy clustering with PSO 
to boost packet delivery but require scalability improvements. Self-organizing 
clustering mechanisms in [64] and [65] enhance packet delivery and reduce routing 
overhead. While these techniques outperform traditional methods like LEACH 
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and PEGASIS, their reliance on static initial clustering poses challenges in mobile 
network setups. 
 
In dynamic IoT environments like LoRaWAN and UWSNs, algorithms such as 
TPSS and REEFSM demonstrate that transmission control, mobility, and adaptive 
routing can achieve over 40% energy savings [85], [79]. However, packet drop 
variability and constrained node mobility remain underexplored. Multi-threshold 
CH selection routing algorithms like MDP, developed in [66] and [67], improve 
energy efficiency in precision agriculture and UWSNs, achieving 43% energy 
savings with reliable performance. In latency-sensitive IIoT applications, hybrid 
schemes integrating GOA with anomaly detection and encryption enhance 
accuracy, throughput, and EE [80]. Despite benefits, bio-inspired models require 
extensive tuning and adaptive clustering often incurs high processing costs, 
limiting deployment in low-power IoT networks. Future directions may involve 
ML-based cluster selection combined with lightweight heuristic routing.  
 
Balancing data security with EE is another critical challenge. Blockchain-based 
security models, such as [83], integrate SDN and decentralized trust mechanisms 
to improve EE by 35% while enhancing latency and efficiency. Studies like [77], 
[78], and [81] use homomorphic encryption and multipath secure routing to 
prevent data leakage while minimizing energy waste, though encryption overhead 
increases costs. Adaptive cryptographic compression techniques [82], [51] improve 
energy use by 30% but offer weaker encryption compared to blockchain-based 
methods. Blockchain models provide stronger security but at higher energy costs, 
whereas lightweight cryptographic methods save power but require optimization 
for sensitive contexts. 
 
Battery-less designs and EH offer sustained IoT operation without traditional 
energy sources. Studies in [89], [90], [96], and [98] explore solar, RF, and KEH for 
agricultural and sensor applications, leveraging low-power hardware (e.g., MSP430 
microcontrollers, custom CMOS circuits) and lightweight software (e.g., Arduino, 
event-driven firmware). Solar-powered LoRa-based systems [89], [95] demonstrate 
week-long autonomy but require adaptability to environmental conditions. 
Battery-less IoT sensors [90], [98] operate under minimal power budgets but face 
limited communication range. SWIPT explored in [96] and [93], enables energy 
reuse in smart grids with up to 30% network-wide energy savings. Energy-aware 
DNN inference methods like checkpoint-less intermittent inference [94], [91] 
support intelligent sensing but rely on ideal infrastructure conditions, limiting real-
world applications. While EH reduces dependency on conventional power 
sources, challenges remain in adapting to real-world variability, particularly in low-
light indoor settings and limited signal range, necessitating hardware-level signal-
boosting strategies. 
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Despite methodological depth, a common limitation across studies is the lack of 
real-world validation. Many solutions are tested in simulated environments like 
MATLAB, NS-2, NS-3, OMNeT++, and Mininet-WiFi, with only a fraction 
deployed in field applications such as LoRaWAN for agriculture, water monitoring, 
and solar-powered nodes [79], [89], [98]. Several models assume idealized 
conditions, perfect CSI, stable energy profiles, or static network topologies—
which may not generalize well to real deployments [96], [74], [75]. The studies 
embrace diverse system architectures, including heterogeneous sensor nodes, fog 
and MEC servers [17],[49], cloud infrastructure [54][61], mobile sinks, UAV base 
stations [39],[54], smart grids, and SDN controllers[26][83].  Moreover, energy 
consumption metrics remain critical for assessing IoT and wireless system 
efficiency, guiding improvements in communication protocols and routing. 
Frequently used metrics include energy use/savings, network lifetime, latency, and 
throughput, while some studies incorporate domain-specific indicators like secrecy 
throughput [93], carbon footprint [79], and device uptime [95], reflecting the 
interdisciplinary nature of energy-aware system design. However, multi-
dimensional trade-off analyses, balancing energy, latency, reliability, and security, 
are rarely explored, but essential for deploying EE solutions in critical applications. 
Table 14 and Figure 7 summarize the metrics and their frequency. 

 
Table 14. Summary of evaluation metrics  

Metric  Specific Metrics  Description 
EE/consumption Energy use, energy 

savings, energy 
consumption, energy 
efficiency, power use, 
power consumption, 
energy intake, energy 
harvested 

Central metric across almost 
all studies, assessing how 
much energy is saved or 
consumed 

Network 
lifetime/device 
uptime 

Network lifetime, device 
uptime, lifetime 
extension, stability, 
residual energy, load 
balancing 

Important for wireless sensor 
networks, IoT nodes, and EH 

Latency / Delay Latency, delay, inference 
latency, task deadline 
violation 

Relevant in fog computing, 
task scheduling, and real-time 
systems 

Throughput/data 
rate 

Throughput, data 
transmission rate, PDR, 
successful inference rate 

Measures the quality of data 
communication and 
processing efficiency 

Packet 
delivery/loss 

PDR, packet loss rate, 
packet drop rate 

Assesses reliability of wireless 
and sensor network 
communication 
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Metric  Specific Metrics  Description 
Computational 
metrics 

Computational 
complexity, overhead, 
memory efficiency, 
convergence time 

Important in algorithmic or 
protocol optimization studies 

Security metrics Attack detection 
accuracy, encryption 
accuracy, secrecy 
throughput, trust 
management, fault 
detection accuracy 

Often combined with energy 
metrics in secure IoT or IIoT 
studies. 

Power 
management / 
Harvesting 

Power harvested, power 
depletion events, energy 
harvesting efficiency 

Key in energy harvesting and 
battery-less device studies 

QoS QoS metrics: throughput, 
delay, reliability & QoE 

Used in network and service-
level evaluations 

Communication 
range / Reliability 

BLE transmission range, 
connectivity reliability 

Relevant in hardware 
prototyping and wireless 
communication 

Fairness/load 
balancing 

Fairness, load balancing, 
cluster efficiency 

Measures distribution of 
workload or energy 
consumption 

Others Carbon footprint, 
forwarding time, accuracy 
(sensor data, ML 
models), fault tolerance, 
network stability 

Miscellaneous metrics 
addressing environmental 
impact, system robustness, or 
model accuracy 

 
As shown in Table 14, energy consumption is a major concern, lowering it directly 
extends the network lifetime, offering a common way to evaluate effectiveness. 
Still, energy savings should not come at the expense of core functions. Throughput 
and PDR remain essential for reliable data transmission. Delay and latency also 
matter, especially in time-sensitive settings, although methods like duty cycle often 
increase them. In addition, load balancing and residual energy demonstrate the 
need to spread energy use evenly, aiding in early node failure avoidance and 
ensuring network stability. Likewise, security features, when included, add 
complexity and extra energy demands that should be carefully managed.  
 
In summary, while core energy-saving methods like DVFS, duty cycle, clustering 
and routing remain widely used, recent research is shifting towards multi-objective 
optimization, AI-driven control, and cross-layer designs. AI-based energy 
optimization now supports network efficiency, security, clustering, and scheduling, 
signalling a strong convergence between AI and IoT energy management. Hybrid 
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clustering and multi-layer routing are emerging as the leading strategies, especially 
in IIoT and smart home settings. Also, blockchain and FL are gaining momentum 
as secure, low-power solutions, supporting data integrity with manageable 
computational demands. Increasingly, hardware-software co-design combined 
with context-aware strategies is seen as essential for scalable IoT systems.  
 

 
Figure 7. Frequency of evaluation metrics used across studies. 

 
3.2.2. Possible Research Directions 
 
Based on the review conducted in this study, some of the notable or promising 
research directions to advance EE optimization in IoT and WSNs are as follows: 
With the advent of privacy-aware IoT deployments, FL has become a decentralized 
approach to energy-efficient enhancement [40], [28]. There is a need for future 
research to investigate adaptive FL frameworks that integrate EH while ensuring 
data security and low-power communication across edge devices. Quantum-
inspired algorithms, such as QIGWO, have shown enhanced routing stability and 
search efficiency [30]. Future studies could benefit from refining quantum-
enhanced heuristic models, examining their potential to reduce energy overhead 
and latency in high-density IoT settings.  Another important aspect is the 
integration of blockchain technology for IoT network sustainability. Across the 
studies that focused on blockchain, the technology has proven effective in secure 
IoT authentication and decentralized identity management [49], [77], [83], but 
reported significant computational overheads. Future research could investigate 
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lightweight blockchain models, ensuring high energy efficiency with minimal 
computational costs, particularly in IIoT and smart cities. 
 
Furthermore, AI-powered multi-objective routing for edge-based IoT is another 
aspect to consider for further investigation. This is because, as EC replaces 
traditional cloud systems, several studies have explored AI-driven multi-objective 
clustering and routing techniques [35], [37], [38]. Future research directions in this 
case could be geared towards energy-aware routing models, combining self-
organizing clustering with fault-tolerant mechanisms to dynamically balance 
workload distribution across edge nodes. Likewise, security-improved AI models 
for Green IoT systems should be considered as well. The exponential rise in the 
adoption of zero-trust authentication models and game-theoretic trust frameworks 
suggests that low-energy security protocols are important [78], [50], [82]. Based on 
this, there is a pressing need to investigate AI-improved secure routing using 
metaheuristic trust-based algorithms to reduce cryptographic overhead while 
ensuring strong security. Moreover, bio-inspired EE improvement for IoT is a 
notable aspect open for further research. As reported across studies, bio-inspired 
AI models, such as the DA and Sailfish optimization, have shown significant 
enhancement in energy-aware clustering in large-scale sensor networks [33], [37]. 
Thus, expanding nature-inspired optimization techniques for energy-aware IoT 
scheduling and adaptive transmission control could improve self-organizing 
network sustainability. Similarly, AI-optimized DSEM in Smart Cities should not 
be ignored.  AI-driven load forecasting models have improved energy scheduling 
in smart cities as reported in [22], [41], [58]. There is a need for future studies to 
focus on explainable DRL-powered demand-side management, combining 
weather prediction, IoT-based consumption tracking, and dynamic resource 
distribution. Finally, adaptive AI scheduling for next-generation MIMO IoT 
networks should also be on point. This is because MIMO-assisted routing schemes 
have shown significant improvements in transmission EE [69]. Consequently, 
future research could investigate AI-powered adaptive scheduling for multi-hop 
MIMO networks to ensure optimized transmission bandwidth and minimal energy 
leakage in 5G-based IoT systems. Across all studies, there were notable limitations 
in terms of evaluation and deployment. Several studies evaluated their work based 
on simulated or testbeds but no real-world validation. To close the gap between 
simulation and deployment, future work should focus on scalable, interoperable, 
and empirically validated solutions that can operate in heterogeneous and 
unpredictable environments. 
 
4. CONCLUSION 
 
This paper presented an SLR demonstrating the progress and persistent challenges 
in advancing energy-efficient IoT and WSN systems. The study reviewed several 
relevant articles and categorised the findings based on the EE technique used to 
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optimise energy use extend network lifetime and provide future directions. Our 
findings reveal the complex interplay between AI-based optimization, adaptive 
networking, and secure energy management as essential to sustaining IoT systems 
across the studied examined. Through combined innovative techniques such as 
DL, RL, FL and bio-inspired clustering, there are significant improvements in 
routing, resource usage, and energy savings. Also, advances in blockchain-based 
security, MIMO communication, and heuristics scheduling demonstrate the 
essence of the increasingly autonomous IoT frameworks. Particularly, AI-driven 
methods offer tremendous energy savings but are challenged with scalability and 
computational overhead. Furthermore, we found that fog-based and edge-based 
schemes like task-offloading and layer designs achieved even greater efficiency but 
often at the cost of added delay. Improvements in clustering and routing contribute 
significantly to extended network lifespan but need contextual adaptation. While 
security solutions attempt to balance protection and energy use, the need for 
lightweight cryptographic methods tailored to resource-constrained devices 
remains. Additionally, EH and hardware-software co-design demonstrate promise 
but are still strained by environmental constraints and device limitations. In 
general, real-world validation, mobility support and resolving security-efficiency 
conflicts remain pressing challenges. Thus, future research should focus on 
lightweight, scalable solutions validated under real-world conditions. They should 
prioritize hybrid AI models for low-power hardware, adaptive secure protocols 
and cross-layer strategies that balance EE with system reliability. As IoT networks 
grow, decentralized, privacy-aware optimization frameworks will be key to 
ensuring secure, low-power operation. Consequently, promising research 
directions include quantum-assisted optimization, AI-driven interference 
management, and secure multipath routing to support sustainable, smart 
connectivity. 
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