
 

Journal of Information Systems and Informatics 
Vol. 7, No. 2, June 2025 e-ISSN: 2656-4882 p-ISSN: 2656-5935 

DOI: 10.51519/journalisi.v7i2.1144 Published By DRPM-UBD 
 

  

1939 

	
 This work is licensed under a Creative Commons Attribution 4.0 International License.	

Optimizer Evaluation for Maize Leaf Disease Using 
Transfer Learning with MobileNetV3-Small 

 
Dhea Fesa Athallah1, Thomas Budiman2, Anton Zulkarnain Sianipar3 
 

1,2,3Informatics Department, STMIK Jayakarta, Jakarta, Indonesia 
Email: 1depsaaa0823@gmail.com, 2thomas@stmik.jayakarta.ac.id, 3antonz.jayakarta@gmail.com 

 
 

Abstract 
 

Manual identification of maize leaf disease presents significant challenges, including time- 
consuming processes, dependence on expert availability, and a high risk of misdiagnosis 
due to similar symptoms among different diseases. These limitations often lead to delays 
in disease management, unstable crop yields, and economic losses for farmers. This study 
aims to address these issues by evaluating the performance of different optimizers in 
classifying maize leaf disease using transfer learning with the MobileNetV3-Small 
architecture. A total of 2,850 images of maize leaf disease were used and divided into 
training, validation, and testing sets. Model evaluation involved systematically comparing 
the Adam, RMSprop, and SGD optimizers by training each configuration under identical 
conditions and assessing the resulting model performance. The results show that the 
RMSprop optimizer provides the best performance with 92.98% accuracy, 93.08% 
precision, 92.98% recall, and 92.98% F1-score. Based on the evaluation, selecting an 
appropriate optimizer is essential to improve accuracy and reliability of transfer learning 
models in maize leaf disease classification. These findings highlight the potential to advance 
smart agricultural systems by enabling more accurate disease detection, which can reduce 
crop failure risks and enhance disease management in maize production. 
 
Keywords: Maize Leaf Disease, CNN, Transfer Learning, MobileNetV3-Small, Optimizer 

 
1. INTRODUCTION  
 
Maize (Zea mays L.) plays a crucial role as a major agricultural commodity and a 
staple food after rice. It has significant economic value due to its diverse uses, 
including food, industrial raw materials, and animal feed [1]. Data from Badan 
Pusat Statistik (BPS) reveals an unstable trend in maize production over the last 
three years. Production reached 16.53 million tons in 2022 but decreased to 14.77 
million tons in 2023. Production increased again in 2024 to 15.14 million tons but 
remained below the 2022 level. This data indicates fluctuations that reflect low 
maize productivity due to various factors.  
 
Climate change is one of the main factors influencing the plant life cycle [2]. 
Unpredictable weather causes variations in temperature and humidity that make 
plants more vulnerable to disease attacks. These diseases are often caused by pests 
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and microorganisms such as fungi, bacteria, and viruses that attack plant organs 
and ultimately cause plant death [3]. Currently, plant disease identification is mostly 
done manually by visual inspection. This approach is limited by time constraints, 
costs, physical accessibility, and the availability of resources [4]. Additionally, 
manual diagnosis is prone to errors, especially when diseases have similar 
symptoms. If untreated, this can affect maize quality, reduce production stability, 
and cause economic losses. 
 
Advances in artificial intelligence and image processing have provided a robust 
solution for automated leaf disease identification by enabling recognition of 
complex visual patterns. One of the most effective deep learning methods for 
image classification is Convolutional Neural Network (CNN) [5], which extracts 
features at multiple scales and achieves high accuracy [6]. Furthermore, CNN 
accelerates model development by utilizing GPU power to efficiently manage 
repetitive computations [7], leading to faster convergence and improved training 
performance. Architectures like VGG16 [8], ResNet50 [9], and DenseNet201 [10] 
have excelled in plant disease classification. Nonetheless, these advanced models 
often require substantial computation, increased memory usage, or lack portability 
[11]. Among the available architectures, MobileNetV3 stands out as a lightweight 
alternative that overcomes such constraints while offering impressive accuracy and 
efficiency for image classification tasks [12]. The MobileNetV3- Small variant has 
demonstrated reliable performance across a range of similar tasks according to 
recent studies [5], [13], and [14], proving highly adaptable for deployment on low-
performance mobile devices as well as embedded systems.   
 
Despite the proven advantages of MobileNetV3-Small in plant disease image 
classification, there remains a distinct gap in evaluating how different optimizers 
influence model performance when integrated with transfer learning. Previous 
research has only compared model architectures, overlooking training strategies 
such as optimizer selection that may affect overall model performance. Detailed 
assessment of optimizers such as Adam, RMSprop, and SGD is needed to clarify 
effects on classification accuracy and training stability for plant disease detection. 
Addressing this research gap through focused performance evaluations enables 
identification of more optimal strategies for accurate and efficient plant disease 
detection. Filling this gap will guide the development of automated systems for 
practical deployment in real-world agricultural environments. 
 
This study aims to evaluate the performance of optimizers in maize leaf disease 
classification by identifying which optimizer among Adam, RMSprop, and SGD 
achieves the highest training accuracy and stability through the application of 
transfer learning and MobileNetV3-Small architecture. Recommendations for 
selecting the optimal training strategy are developed by thoroughly examining the 
classification accuracy, model efficiency, and learning consistency. The results of 
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this study empower farmers to make timely decisions and help minimize crop 
losses. In addition, there is potential for intelligent disease detection systems to be 
integrated into mobile devices and modern agricultural technologies so that the 
adoption of smart farming practices can progress more rapidly. 
  
2. METHODS 
 
The research flow consists of several key stages that guide the development and 
assessment of the proposed model as shown in Figure 1. Each stage is structured 
to ensure the model is accurate and reliable for maize leaf disease classification. 
 

 
Figure 1. Research Flow 

 
2.1. Data Acquisition 

 
The dataset used in this study was obtained from the Dataset for Crop Pest and 
Disease Detection [15], which contains plant images in both healthy and diseased 
conditions. Since the original dataset includes images of various diseases and pests 
affecting different types of crops, only images related to maize leaf diseases were 
selected for this research to ensure relevance to the study objectives. All images 
were captured using high-resolution cameras and saved in JPG format, with 
dimensions ranging from 400 by 400 to 4032 by 3024 pixels. From the total of 
3,244 available images, a subset of 2,850 images was chosen proportionally from 
three maize leaf disease categories in order to avoid bias during model training. 
These selected images represent three distinct disease categories, which are Maize 
Leaf Blight, Maize Leaf Spot, and Maize Streak Virus. Each of these disease 
categories is shown in Figure 2 with corresponding sample images. 

 

 
 

Figure 2. Maize Leaf Disease 
 



Journal of Information Systems and Informatics 
Vol. 7, No. 2, June 2025 

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882 

 

1942 | Optimizer Evaluation for Maize Leaf Disease Using Transfer Learning with ..... 

2.2. Data Pre-processing 
 
Pre-processing is an essential step that ensures the data are properly prepared for 
classification purposes. Improving image quality at this stage allows the model to 
learn more effectively during training [16]. In this study, specific techniques were 
used to optimize the dataset for the modeling process. The data pre-processing 
steps consisted of image resizing, data augmentation, and data splitting. This 
preparation ensures the input data are well suited for training and supports better 
performance of the classification model. 

 
2.2.1. Image Resizing 
 
The maize leaf disease images in the dataset have various dimensions, so it was 
important to standardize the image sizes for this study. Adjusting the dimensions 
of each image creates a uniform dataset and is expected to reduce computation 
time during model training [17]. Every image was resized to 224 x 224 pixels to 
match the standard input size required by the model. Figure 3 shows results of the 
resizing process by providing a clear comparison between images before and after 
adjustment. 
 

 
 

Figure 3. Image Size Adjustment 
 
2.2.2. Data Augmentation 
 
Augmentation provides an effective way to build models that are generalizable and 
enhance system robustness, especially when the amount of training data is limited 
[18]. Various image transformations were used to enrich the dataset by applying 
suitable parameter values for each technique. Images were randomly rotated up to 
40 degrees, shifted horizontally and vertically by 0.2, subjected to shear and zoom 
of 0.2, with only horizontal flipping applied and brightness adjusted within a range 
from 0.6 to 1.0 to improve illumination conditions. Figure 4 shows examples of 
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images produced through this augmentation process. The dataset size for each 
class was increased twofold to help prevent overfitting during model training. 
Increasing data diversity in this manner enables the model to better recognize a 
wide range of visual patterns. 
 

 

 
 

Figure 4. Data Augmentation Examples 
 

2.2.3. Data Splitting 
 
After augmentation, the dataset was split to achieve balanced representation for 
each class. The data were divided into three subsets, assigning 80% for training, 
10% for validation, and 10% for testing. Proportional sampling was applied to 
ensure that each subset included the same class distribution as the overall dataset. 
During the splitting process, images were randomly selected within each class to 
reduce selection bias and ensure fairness in model assessment. By maintaining 
balanced class proportions throughout all subsets, the evaluation results provide 
an accurate reflection of model performance. Details of the data distribution are 
shown in Table 1.   
 

Tabel 1. Distribution of Maize Leaf Disease 
Name of Disease Original Augmented Train Val Test Total 
Maize Leaf Blight 950 950 1,520 190 190 1,900 
Maize Leaf Spot 950 950 1,520 190 190 1,900 
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Name of Disease Original Augmented Train Val Test Total 
Maize Streak Virus 950 950 1,520 190 190 1,900 
Total 2,850 2,850 4,650 570 570 5,700 

 
2.3. Model Architecture 
 
Convolutional Neural Network (CNN) was developed to read digital information 
and extract features for computer vision tasks such as image classification [19]. 
MobileNetV3 stands out as a lightweight Convolutional Neural Network (CNN) 
architecture introduced by Google in 2019 as an improvement over previous 
model. This architecture integrates Squeeze and Excitation (SE) modules with 
channel attention, residual connections and depth wise separable convolutions to 
reduce parameters while also enhancing overall network performance [20]. Image 
classification is carried out using MobileNetV3-Small as the backbone network. 
MobileNetV3-Small was selected for its efficiency and its capability to maintain 
high accuracy, even when applied to datasets of limited size. Employing this model 
facilitated the extraction of distinctive features from maize leaf disease images, 
contributing to reliable classification outcomes. 
 
2.4. Training Optimization 
 
Optimization became an important part of neural network training to improve 
model stability, generalization, and convergence rate [21]. A transfer learning 
strategy was adopted by utilizing MobileNetV3-Small as the pre-trained base 
model on the ImageNet dataset. Transfer learning offers an efficient approach, 
removing the need to construct and train a model from scratch. The pre-trained 
model provides a broad set of features that are useful for diverse computer vision 
problems [22], including the classification of maize leaf diseases. Model parameters 
learned from the pre-trained neural network are transferred to the target model to 
facilitate training with new data [19]. During this process, the final layers of the 
pre-trained model are excluded so the network operates as a feature extractor [23], 
and the extracted features are processed by newly added classification layers to 
generate predictions. This approach enables faster and more accurate model 
training even when working with limited data [24]. To further optimize the process, 
three optimizers were applied, namely Adam, RMSprop, and SGD. Adam provides 
an adaptive learning rate and efficiently handles sparse gradients [25], RMSprop 
enables robust and consistent training for non-stationary environments [26], and 
SGD offers simplicity and stable performance [27]. Each optimizer was assessed 
using the same hyperparameter settings to evaluate the impact on final model 
performance. 
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2.5. Performance Evaluation 
 
Model performance evaluation was conducted using a confusion matrix, which 
presents classification results based on the number of correct and incorrect 
predictions for each maize leaf disease class. Each confusion matrix enabled 
comparison of model performance across all optimizers and disease classes. The 
confusion matrix provides values for True Positive (TP), True Negative (TN), 
False Positive (FP), and False Negative (FN), which are then used to calculate 
accuracy, precision, recall, and f1-score using equations (1), (2), (3), and (4) [28]. 
 

  (1) 
 
 

  (2) 
 
 

  (3) 
 
 

  (4) 
 

 
3. RESULTS AND DISCUSSION 
 
This section presents the experimental results and analysis of maize leaf disease 
classification using transfer learning with the MobileNetV3-Small architecture. 
Various evaluation metrics are used to show the accuracy and reliability of the 
model across different optimizers. All models were trained using the same 
hyperparameter settings, including 100 epochs, an initial learning rate of 0.0001, 
and a batch size of 32, to ensure consistency during evaluation. The analysis 
focuses on how well the model classifies images into each leaf disease category. 
Furthermore, a comparison of optimizer performance is included to highlight the 
effectiveness of different approaches within the classification task. 
 
3.1. Performance with Adam Optimizer 
 
The model was trained using the Adam optimizer and reached a training accuracy 
of 0.9543 with a loss of 0.1464. For validation, the model achieved an accuracy of 
0.9456 and a loss value of 0.1614. Both the accuracy and loss for training and 
validation changed in a similar pattern over the training process. Figure 5 shows 
the full curves of accuracy and loss for both training and validation phases. 
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Figure 5. Adam Training Result 

 
On the test data, the confusion matrix shows that 172 samples of Maize leaf blight 
were classified correctly, while 11 were labeled as Maize leaf spot and 7 as Maize 
streak virus. In Maize leaf spot, 179 were correct, with 10 as Maize leaf blight and 
1 as Maize streak virus. For Maize streak virus, 178 were classified correctly, while 
2 were assigned to Maize leaf blight and 10 to Maize leaf spot. The classification 
report lists precision, recall, and f1-score for each class. Maize leaf blight has 0.93, 
0.91, and 0.92, Maize leaf spot has 0.90, 0.94, and 0.92, and Maize streak virus has 
0.96, 0.94, and 0.95. Overall accuracy reached 0.93, with macro and weighted 
averages also at 0.93 for all metrics. These results with the confusion matrix and 
classification report are shown in Figure 6. 
 
 
 
 
 

 
 

 
 

 
 
 
 
 

 
 
 
 
 
 

 
Figure 6. Adam Classification Results 
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3.2. Performance with SGD Optimizer 
 
Training with the SGD optimizer yielded a training accuracy of 0.8695 and loss of 
0.3680. Validation accuracy reached 0.8772 with a loss of 0.3254. The training 
graph shows validation accuracy quickly exceeded training accuracy and stayed 
higher throughout, while validation loss remained below training loss after early 
epochs. Figure 7 presents the complete accuracy and loss curves during training. 
 

 
Figure 7. SGD Training Result 

 
Based on the results, 152 samples from the Maize leaf blight class were predicted 
correctly, while 30 were classified as Maize leaf spot and 8 as Maize streak virus. 
The Maize leaf spot category had 175 correct predictions, with 13 in Maize leaf 
blight and 2 in Maize streak virus. In the Maize streak virus group, 163 samples 
were identified accurately, with 7 assigned to Maize leaf blight and 20 to Maize leaf 
spot. Precision, recall, and f1-score for Maize leaf blight are 0.88, 0.80, and 0.84, 
for Maize leaf spot are 0.78, 0.92, and 0.84, and for Maize streak virus are 0.94, 
0.86, and 0.90. Overall accuracy is 0.86, with macro and weighted averages for 
precision of 0.87, recall and f1-score each 0.86. Figure 8 presents these results along 
with the confusion matrix and classification report for the SGD optimizer. 
 

  
 
 
 
 
 

 
Figure 8. SGD Classification Results 
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3.3. Performance with RMSprop Optimizer 
 
The RMSprop optimizer was used to train the model, yielding a training accuracy 
of 0.9527 and loss of 0.1422. On the validation set, accuracy reached 0.9368 with 
a loss of 0.1767. The training curve indicates accuracy and loss for both sets 
progressed consistently, with validation closely tracking those of training across 
epochs. These accuracy and loss curves for both sets are shown in Figure 9. 
 

 
Figure 9. RMSProp Training Result 

 
The confusion matrix for the RMSprop optimizer shows 170 Maize leaf blight 
samples classified correctly, with 13 as Maize leaf spot and 7 as Maize streak virus. 
For Maize leaf spot, 181 were correct, while 8 were Maize leaf blight and 1 as Maize 
streak virus. In Maize streak virus, 179 matched the correct label, while 3 were 
Maize leaf blight and 8 as Maize leaf spot. The classification report gives precision 
of 0.94, recall of 0.89, and f1-score of 0.92 for Maize leaf blight. Maize leaf spot 
has values of 0.90, 0.95, and 0.92, while Maize streak virus yields 0.96 for precision, 
0.94 for recall, and 0.95 for f1-score. Total accuracy is 0.93, with macro and 
weighted averages for all metrics also 0.93. Figure 10 contains both the confusion 
matrix and the classification report for the RMSprop optimizer. 

 

  
 
 
 
 
 
 

Figure 10. RMSprop Classification Results 
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3.4. Optimizer Performance Overview 
 
The model performance analysis focused on the classification results of each 
training scenario in the application of transfer learning using the MobileNetV3- 
Small architecture for maize leaf disease classification. Table 3 contains the results 
obtained from each scenario, presenting the variation in performance produced by 
each optimizer. Key evaluation metrics such as accuracy, precision, recall, and f1-
score are included to show how each optimizer contributes to the classification 
process. Results for each metric represent the outcomes achieved for the model 
with the corresponding optimizer. All of this information serves as a reference for 
comparing model performance across different scenarios. 
 

Tabel 2. Comparison of Optimizer Performance 
Evaluation Metrics Optimizers 

Adam SGD RMSProp 
Accuracy (%) 92.81 85.96 92.98 
Precision (%) 92.89 86.79 93.08 
Recall (%) 92.81 85.96 92.98 
F1-Score (%) 92.82 86.04 92.98 

 
As presented in Table 2, Adam resulted in an accuracy of 92.81%, with precision 
and recall reported at 92.98 and 92.81%, and f1-score of 92.82 %. When using the 
SGD optimizer, the model achieved an accuracy of 85.96%, precision of 86.79%, 
recall of 85.96%, and an f1-score of 86.04%. RMSprop achieved 92.98% accuracy, 
while its precision, recall, and f1-score reached 93.08%, 92.98%, and 92.98% 
respectively. The metrics reported in the table reflect the classification outcomes 
produced by the model when evaluated with the specified optimizer in each 
scenario. 
 
3.5. Discussion 
 
The performance evaluation of the model trained with transfer learning and 
MobileNetV3 Small compared outcomes across various training scenarios using 
different optimizers for maize leaf disease classification. Using Adam resulted in 
stable training and effective feature extraction, which produced balanced results 
for all classes. RMSprop showed similar behavior, delivering consistent learning 
and reliable predictions. In contrast, models trained with SGD displayed greater 
fluctuations in accuracy and loss, often requiring more training epochs to achieve 
convergence. The classification report and confusion matrix indicated that 
RMSprop achieved the highest accuracy, precision, recall, and f1 score for each 
class, with Adam yielding closely similar results. More frequent errors in class 
assignment occurred with SGD, especially between classes that shared similar 
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visual patterns. This pattern emphasizes that optimizer selection significantly 
influences classification performance for maize leaf disease detection. 
 
Beyond the choice of optimizer, broader factors play an important role in the 
model’s ability to generalize and maintain reliable performance. The high visual 
similarity among maize leaf disease images makes it challenging for the model to 
separate one class from another, which increases the risk of misclassification even 
when a suitable optimizer is used. Ensuring balanced sample counts for each class 
and maintaining high image quality help produce better learning outcomes. Careful 
adjustment of training parameters such as batch size, learning rate, and total epochs 
supports stable and accurate predictions. Regular monitoring of prediction 
outcomes and ongoing review of model behavior are essential to identify and 
resolve issues like overfitting, underfitting, or persistent misclassifications during 
training. By prioritizing these factors, models can be developed that are robust, 
capable of generalizing to new data, and able to provide dependable results in 
practical applications. 
 
While the optimizers delivered strong performance overall, some limitations 
remain when considering individual classes. Overfitting can occur in classes with 
limited data, resulting in a model that performs well during training but has 
difficulty with unseen samples. Underfitting is also possible when an optimizer 
does not capture distinct features in visually comparable classes, which can lead to 
more frequent misclassifications. To address these issues, it is important to focus 
not only on overall accuracy but also on achieving reliable predictions for each 
class. Training strategies such as data augmentation and regularization are valuable 
for helping the model learn complex visual patterns and for reducing the risks of 
overfitting or underfitting. Robustness to real-world data must also be considered, 
as changes in background, lighting, and symptom appearance add complexity to 
disease classification. Considering both the limitations in individual classes and the 
need for model robustness is essential for achieving practical and effective results. 
 
In addition to classification accuracy, efficiency in computation is an important 
consideration for real-world deployment. Adam often leads to faster convergence 
and stable training, though it can require more memory and processing power 
compared to other optimizers. RMSprop enables steady progress during training 
but may offer a different balance of speed and resource use, depending on the 
dataset and task complexity. SGD typically needs more epochs to reach a similar 
level of accuracy but can provide advantages in computational simplicity and faster 
execution per epoch. Selecting the appropriate optimizer is particularly important 
when resources are limited or when models need to operate in real time. The 
decision should balance high classification performance with efficient use of 
available hardware and operational requirements. Achieving both strong model 
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performance and sustainable deployment depends on careful alignment between 
training strategies and practical constraints. 
 
Based on the results of evaluation across multiple training scenarios, selecting an 
appropriate optimizer is crucial for model reliability and successful classification 
outcomes. Comparison of optimizers demonstrates clear differences in learning 
stability, prediction consistency, and the model’s ability to distinguish between 
classes with comparable features. Evaluation of performance also shows that not 
all optimizers can address every challenge present in the dataset and that some are 
better at supporting the model’s capacity to learn and generalize. A systematic 
assessment of optimization strategies provides a solid foundation for advancing 
model development and informs decisions that are supported by experimental 
evidence. Utilizing these evaluation results ensures the alignment of optimization 
methods with specific classification tasks and contributes to the enhancement of 
model quality. 
 
4. CONCLUSION 
 
This research comprehensively evaluates optimizer performance for maize leaf 
disease classification using transfer learning with MobileNetV3-Small. RMSProp 
achieved the highest accuracy, precision, recall, and f1-score, while Adam and SGD 
showed lower and less consistent results. These findings indicate that optimizer 
selection significantly influences learning stability, convergence, and prediction 
consistency across disease categories. By enabling earlier and more accurate 
detection of maize leaf diseases, RMSProp has the potential to support timely 
management decisions and reduce crop losses. Improved identification of disease 
symptoms can enhance maize crop productivity by supporting better crop 
management practices. Unfortunately, the evaluation used a relatively small dataset 
containing only three categories of maize leaf diseases which may affect 
consistency of classification performance in more complex or varied conditions. 
Future research should adjust hyperparameters, explore advanced optimization 
strategies or alternative model architectures, and incorporate additional data 
sources such as weather data, soil conditions, pest information, or real-time 
monitoring to further improve performance and strengthen the implementation of 
smart agriculture systems. 
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