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Abstract

Manual identification of maize leaf disease presents significant challenges, including time-
consuming processes, dependence on expert availability, and a high risk of misdiagnosis
due to similar symptoms among different diseases. These limitations often lead to delays
in disease management, unstable crop yields, and economic losses for farmers. This study
aims to address these issues by evaluating the performance of different optimizers in
classifying maize leaf disease using transfer learning with the MobileNetV3-Small
architecture. A total of 2,850 images of maize leaf disease were used and divided into
training, validation, and testing sets. Model evaluation involved systematically comparing
the Adam, RMSprop, and SGD optimizers by training each configuration under identical
conditions and assessing the resulting model performance. The results show that the
RMSprop optimizer provides the best performance with 92.98% accuracy, 93.08%
precision, 92.98% recall, and 92.98% F1-score. Based on the evaluation, selecting an
appropriate optimizer is essential to improve accuracy and reliability of transfer learning
models in maize leaf disease classification. These findings highlight the potential to advance
smart agricultural systems by enabling more accurate disease detection, which can reduce
crop failure risks and enhance disease management in maize production.
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1. INTRODUCTION

Maize (Zea mays L.) plays a crucial role as a major agricultural commodity and a
staple food after rice. It has significant economic value due to its diverse uses,
including food, industrial raw materials, and animal feed [1]. Data from Badan
Pusat Statistik (BPS) reveals an unstable trend in maize production over the last
three years. Production reached 16.53 million tons in 2022 but decreased to 14.77
million tons in 2023. Production increased again in 2024 to 15.14 million tons but
remained below the 2022 level. This data indicates fluctuations that reflect low
maize productivity due to various factors.

Climate change is one of the main factors influencing the plant life cycle [2].

Unpredictable weather causes variations in temperature and humidity that make
plants more vulnerable to disease attacks. These diseases are often caused by pests
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and microorganisms such as fungi, bacteria, and viruses that attack plant organs
and ultimately cause plant death [3]. Currently, plant disease identification is mostly
done manually by visual inspection. This approach is limited by time constraints,
costs, physical accessibility, and the availability of resources [4]. Additionally,
manual diagnosis is prone to errors, especially when diseases have similar
symptoms. If untreated, this can affect maize quality, reduce production stability,
and cause economic losses.

Advances in artificial intelligence and image processing have provided a robust
solution for automated leaf disease identification by enabling recognition of
complex visual patterns. One of the most effective deep learning methods for
image classification is Convolutional Neural Network (CNN) [5], which extracts
features at multiple scales and achieves high accuracy [6]. Furthermore, CNN
accelerates model development by utilizing GPU power to efficiently manage
repetitive computations [7], leading to faster convergence and improved training
performance. Architectures like VGG16 [8], ResNet50 [9], and DenseNet201 [10]
have excelled in plant disease classification. Nonetheless, these advanced models
often require substantial computation, increased memory usage, or lack portability
[11]. Among the available architectures, MobileNetV3 stands out as a lightweight
alternative that overcomes such constraints while offering impressive accuracy and
efficiency for image classification tasks [12]. The MobileNetV3- Small variant has
demonstrated reliable performance across a range of similar tasks according to
recent studies [5], [13], and [14], proving highly adaptable for deployment on low-
performance mobile devices as well as embedded systems.

Despite the proven advantages of MobileNetV3-Small in plant disease image
classification, there remains a distinct gap in evaluating how different optimizers
influence model performance when integrated with transfer learning. Previous
research has only compared model architectures, overlooking training strategies
such as optimizer selection that may affect overall model performance. Detailed
assessment of optimizers such as Adam, RMSprop, and SGD is needed to clarify
effects on classification accuracy and training stability for plant disease detection.
Addressing this research gap through focused performance evaluations enables
identification of more optimal strategies for accurate and efficient plant disease
detection. Filling this gap will guide the development of automated systems for
practical deployment in real-world agricultural environments.

This study aims to evaluate the performance of optimizers in maize leaf disease
classification by identifying which optimizer among Adam, RMSprop, and SGD
achieves the highest training accuracy and stability through the application of
transfer learning and MobileNetV3-Small architecture. Recommendations for
selecting the optimal training strategy are developed by thoroughly examining the
classification accuracy, model efficiency, and learning consistency. The results of
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this study empower farmers to make timely decisions and help minimize crop
losses. In addition, there is potential for intelligent disease detection systems to be
integrated into mobile devices and modern agricultural technologies so that the
adoption of smart farming practices can progress more rapidly.

2. METHODS

The research flow consists of several key stages that guide the development and
assessment of the proposed model as shown in Figure 1. Each stage is structured
to ensure the model is accurate and reliable for maize leaf disease classification.

Data Data Model N Training | Performance
Acquisition “| Pre-processing “| Architecture “| Optimization | Evaluation
Figure 1. Research Flow

2.1. Data Acquisition

The dataset used in this study was obtained from the Dataset for Crop Pest and
Disease Detection [15], which contains plant images in both healthy and diseased
conditions. Since the original dataset includes images of various diseases and pests
affecting different types of crops, only images related to maize leaf diseases were
selected for this research to ensure relevance to the study objectives. All images
were captured using high-resolution cameras and saved in JPG format, with
dimensions ranging from 400 by 400 to 4032 by 3024 pixels. From the total of
3,244 available images, a subset of 2,850 images was chosen proportionally from
three maize leaf disease categories in order to avoid bias during model training,
These selected images represent three distinct disease categories, which are Maize
Leaf Blight, Maize Leaf Spot, and Maize Streak Virus. Each of these disease
categories is shown in Figure 2 with corresponding sample images.

Maize Leaf Blight Maize Leaf Spot Maize Streak Virus

Figure 2. Maize Leaf Disease
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2.2. Data Pre-processing

Pre-processing is an essential step that ensures the data are propetly prepared for
classification purposes. Improving image quality at this stage allows the model to
learn more effectively during training [16]. In this study, specific techniques were
used to optimize the dataset for the modeling process. The data pre-processing
steps consisted of image resizing, data augmentation, and data splitting. This
preparation ensures the input data are well suited for training and supports better
performance of the classification model.

2.2.1. Image Resizing

The maize leaf disease images in the dataset have various dimensions, so it was
important to standardize the image sizes for this study. Adjusting the dimensions
of each image creates a uniform dataset and is expected to reduce computation
time during model training [17]. Every image was resized to 224 x 224 pixels to
match the standard input size required by the model. Figure 3 shows results of the
resizing process by providing a clear comparison between images before and after
adjustment.

Original Image Resized to 224x224

Figure 3. Image Size Adjustment
2.2.2. Data Augmentation

Augmentation provides an effective way to build models that are generalizable and
enhance system robustness, especially when the amount of training data is limited
[18]. Various image transformations were used to enrich the dataset by applying
suitable parameter values for each technique. Images were randomly rotated up to
40 degrees, shifted horizontally and vertically by 0.2, subjected to shear and zoom
of 0.2, with only horizontal flipping applied and brightness adjusted within a range
from 0.6 to 1.0 to improve illumination conditions. Figure 4 shows examples of
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images produced through this augmentation process. The dataset size for each
class was increased twofold to help prevent overfitting during model training.
Increasing data diversity in this manner enables the model to better recognize a
wide range of visual patterns.

Shift

Rotation Range Shear Range

Zoom Range Horizontal Flip Brightness Range

Figure 4. Data Augmentation Examples
2.2.3. Data Splitting

After augmentation, the dataset was split to achieve balanced representation for
each class. The data were divided into three subsets, assigning 80% for training,
10% for validation, and 10% for testing. Proportional sampling was applied to
ensure that each subset included the same class distribution as the overall dataset.
During the splitting process, images were randomly selected within each class to
reduce selection bias and ensure fairness in model assessment. By maintaining
balanced class proportions throughout all subsets, the evaluation results provide
an accurate reflection of model performance. Details of the data distribution are
shown in Table 1.

Tabel 1. Distribution of Maize Leaf Disease
Name of Disease  Original Augmented Train  Val Test Total
Maize Leaf Blight 950 950 1,520 190 190 1,900
Maize Leaf Spot 950 950 1,520 190 190 1,900
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Name of Disease Original  Augmented Train Val Test Total
Maize Streak Virus 950 950 1,520 190 190 1,900
Total 2,850 2,850 4,650 570 570 5,700

2.3. Model Architecture

Convolutional Neural Network (CNN) was developed to read digital information
and extract features for computer vision tasks such as image classification [19].
MobileNetV3 stands out as a lightweight Convolutional Neural Network (CNN)
architecture introduced by Google in 2019 as an improvement over previous
model. This architecture integrates Squeeze and Excitation (SE) modules with
channel attention, residual connections and depth wise separable convolutions to
reduce parameters while also enhancing overall network performance [20]. Image
classification is carried out using MobileNetV3-Small as the backbone network.
MobileNetV3-Small was selected for its efficiency and its capability to maintain
high accuracy, even when applied to datasets of limited size. Employing this model
facilitated the extraction of distinctive features from maize leaf disease images,
contributing to reliable classification outcomes.

2.4. Training Optimization

Optimization became an important part of neural network training to improve
model stability, generalization, and convergence rate [21]. A transfer learning
strategy was adopted by utilizing MobileNetV3-Small as the pre-trained base
model on the ImageNet dataset. Transfer learning offers an efficient approach,
removing the need to construct and train a model from scratch. The pre-trained
model provides a broad set of features that are useful for diverse computer vision
problems [22], including the classification of maize leaf diseases. Model parameters
learned from the pre-trained neural network are transferred to the target model to
facilitate training with new data [19]. During this process, the final layers of the
pre-trained model are excluded so the network operates as a feature extractor [23],
and the extracted features are processed by newly added classification layers to
generate predictions. This approach enables faster and more accurate model
training even when working with limited data [24]. To further optimize the process,
three optimizers were applied, namely Adam, RMSprop, and SGD. Adam provides
an adaptive learning rate and efficiently handles sparse gradients [25], RMSprop
enables robust and consistent training for non-stationary environments [20], and
SGD offers simplicity and stable performance [27]. Each optimizer was assessed
using the same hyperparameter settings to evaluate the impact on final model
performance.
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2.5. Performance Evaluation

Model performance evaluation was conducted using a confusion matrix, which
presents classification results based on the number of correct and incorrect
predictions for each maize leaf disease class. Each confusion matrix enabled
comparison of model performance across all optimizers and disease classes. The
confusion matrix provides values for True Positive (TP), True Negative (TN),
False Positive (FP), and False Negative (FN), which are then used to calculate
accuracy, precision, recall, and fl-score using equations (1), (2), (3), and (4) [28].

decuracy = TP+ TN 1)
CoUracy = TP YFP+ FN + TN
TP
e - )
Precision TP L FP ( )
. TP (3)
Recall = 75T FN
2 x Recall x Precision
F1= ©)

Recall + Precision

3. RESULTS AND DISCUSSION

This section presents the experimental results and analysis of maize leaf disease
classification using transfer learning with the MobileNetV3-Small architecture.
Various evaluation metrics are used to show the accuracy and reliability of the
model across different optimizers. All models were trained using the same
hyperparameter settings, including 100 epochs, an initial learning rate of 0.0001,
and a batch size of 32, to ensure consistency during evaluation. The analysis
focuses on how well the model classifies images into each leaf disease category.
Furthermore, a comparison of optimizer performance is included to highlight the
effectiveness of different approaches within the classification task.

3.1. Performance with Adam Optimizer

The model was trained using the Adam optimizer and reached a training accuracy
of 0.9543 with a loss of 0.1464. For validation, the model achieved an accuracy of
0.9456 and a loss value of 0.1614. Both the accuracy and loss for training and
validation changed in a similar pattern over the training process. Figure 5 shows
the full curves of accuracy and loss for both training and validation phases.
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Figure 5. Adam Training Result

On the test data, the confusion matrix shows that 172 samples of Maize leaf blight
were classified correctly, while 11 were labeled as Maize leaf spot and 7 as Maize
streak virus. In Maize leaf spot, 179 were correct, with 10 as Maize leaf blight and
1 as Maize streak virus. For Maize streak virus, 178 were classified correctly, while
2 were assigned to Maize leaf blight and 10 to Maize leaf spot. The classification
report lists precision, recall, and fl1-score for each class. Maize leaf blight has 0.93,
0.91, and 0.92, Maize leaf spot has 0.90, 0.94, and 0.92, and Maize streak virus has
0.96, 0.94, and 0.95. Overall accuracy reached 0.93, with macro and weighted
averages also at 0.93 for all metrics. These results with the confusion matrix and
classification report are shown in Figure 6.

Confusion Matrix (Adam)
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Maize leaf blight

True
Maize leaf spot
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- 60
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-20

Maize streak virus

Maize leaf spot Maize streak virus
Predicted

Maize leaf blight

Classification Report (Adam):
precision recall fl-score support

Maize leaf blight 0.93 0.91 0.92 190
Maize leaf spot 0.90 0.94 0.92 190
Maize streak virus 0.96 0.94 0.95 190
accuracy 0.93 570

macro avg 0.93 0.93 0.93 570
weighted avg 0.93 0.93 0.93 570

Figure 6. Adam Classification Results
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3.2. Performance with SGD Optimizer

Training with the SGD optimizer yielded a training accuracy of 0.8695 and loss of
0.3680. Validation accuracy reached 0.8772 with a loss of 0.3254. The training
graph shows validation accuracy quickly exceeded training accuracy and stayed
higher throughout, while validation loss remained below training loss after early
epochs. Figure 7 presents the complete accuracy and loss curves during training.
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Figure 7. SGD Training Result

Based on the results, 152 samples from the Maize leaf blight class were predicted
correctly, while 30 were classified as Maize leaf spot and 8 as Maize streak virus.
The Maize leaf spot category had 175 correct predictions, with 13 in Maize leaf
blight and 2 in Maize streak virus. In the Maize streak virus group, 163 samples
were identified accurately, with 7 assigned to Maize leaf blight and 20 to Maize leaf
spot. Precision, recall, and f1-score for Maize leaf blight are 0.88, 0.80, and 0.84,
for Maize leaf spot are 0.78, 0.92, and 0.84, and for Maize streak virus are 0.94,
0.86, and 0.90. Overall accuracy is 0.86, with macro and weighted averages for
precision of 0.87, recall and f1-score each 0.86. Figure 8 presents these results along
with the confusion matrix and classification report for the SGD optimizer.

Confusion Matrix (SGD)

Classification Report (SGD):

160 precision recall fl-score support

£
S
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I 140 Maize leaf spot 0.78 0.92 0.84 190
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=
120 accuracy 0.86 570
macro avg 0.87 0.86 0.86 570
weighted avg .87 0.86 0.86 570

True
Maize leaf spot

Maize streak virus

Maize leaf spot Maize streak virus
Predicted

Figure 8. SGD Classification Results

Maize leaf blight
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3.3. Performance with RMSprop Optimizer

The RMSprop optimizer was used to train the model, yielding a training accuracy
of 0.9527 and loss of 0.1422. On the validation set, accuracy reached 0.9368 with
a loss of 0.1767. The training curve indicates accuracy and loss for both sets
progressed consistently, with validation closely tracking those of training across
epochs. These accuracy and loss curves for both sets are shown in Figure 9.

10 Accuracy (RMSprop) 14 Loss (RMSprop)
—— Train Loss (Smoothed)
1.2 Validation Loss (Smoothed)
0.9
1.0
> 0.8 0.8
I @
3 g
9
<07 06
0.4
0.6
—— Train Accuracy (Smoothed) 0.2 - - _
Validation Accuracy (Smoothed)
0.5 T T T 0.0 T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Epochs Epochs

Figure 9. RMSProp Training Result

The confusion matrix for the RMSprop optimizer shows 170 Maize leaf blight
samples classified correctly, with 13 as Maize leaf spot and 7 as Maize streak virus.
For Maize leaf spot, 181 were correct, while 8 were Maize leaf blight and 1 as Maize
streak virus. In Maize streak virus, 179 matched the correct label, while 3 were
Maize leaf blight and 8 as Maize leaf spot. The classification report gives precision
of 0.94, recall of 0.89, and fl-score of 0.92 for Maize leaf blight. Maize leaf spot
has values of 0.90, 0.95, and 0.92, while Maize streak virus yields 0.96 for precision,
0.94 for recall, and 0.95 for fl-score. Total accuracy is 0.93, with macro and
weighted averages for all metrics also 0.93. Figure 10 contains both the confusion
matrix and the classification report for the RMSprop optimizer.

Confusion Matrix (RMSprop)
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Figure 10. RMSprop Classification Results
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3.4. Optimizer Performance Overview

The model performance analysis focused on the classification results of each
training scenario in the application of transfer learning using the MobileNetV3-
Small architecture for maize leaf disease classification. Table 3 contains the results
obtained from each scenario, presenting the variation in performance produced by
each optimizer. Key evaluation metrics such as accuracy, precision, recall, and f1-
score are included to show how each optimizer contributes to the classification
process. Results for each metric represent the outcomes achieved for the model
with the corresponding optimizer. All of this information serves as a reference for
comparing model performance across different scenarios.

Tabel 2. Comparison of Optimizer Performance

Evaluation Metrics Optimizers

Adam SGD RMSProp
Accuracy (%) 92.81 85.96 92.98
Precision (%) 92.89 86.79 93.08
Recall (%) 92.81 85.96 92.98
F1-Score (%) 92.82 86.04 92.98

As presented in Table 2, Adam resulted in an accuracy of 92.81%, with precision
and recall reported at 92.98 and 92.81%, and f1-score of 92.82 %. When using the
SGD optimizer, the model achieved an accuracy of 85.96%, precision of 86.79%,
recall of 85.96%, and an fl-score of 86.04%. RMSprop achieved 92.98% accuracy,
while its precision, recall, and fl-score reached 93.08%, 92.98%, and 92.98%
respectively. The metrics reported in the table reflect the classification outcomes
produced by the model when evaluated with the specified optimizer in each
scenario.

3.5. Discussion

The performance evaluation of the model trained with transfer learning and
MobileNetV3 Small compared outcomes across various training scenarios using
different optimizers for maize leaf disease classification. Using Adam resulted in
stable training and effective feature extraction, which produced balanced results
for all classes. RMSprop showed similar behavior, delivering consistent learning
and reliable predictions. In contrast, models trained with SGD displayed greater
fluctuations in accuracy and loss, often requiring more training epochs to achieve
convergence. The classification report and confusion matrix indicated that
RMSprop achieved the highest accuracy, precision, recall, and f1 score for each
class, with Adam yielding closely similar results. More frequent errors in class
assignment occurred with SGD, especially between classes that shared similar
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visual patterns. This pattern emphasizes that optimizer selection significantly
influences classification performance for maize leaf disease detection.

Beyond the choice of optimizer, broader factors play an important role in the
model’s ability to generalize and maintain reliable performance. The high visual
similarity among maize leaf disease images makes it challenging for the model to
separate one class from another, which increases the risk of misclassification even
when a suitable optimizer is used. Ensuring balanced sample counts for each class
and maintaining high image quality help produce better learning outcomes. Careful
adjustment of training parameters such as batch size, learning rate, and total epochs
supports stable and accurate predictions. Regular monitoring of prediction
outcomes and ongoing review of model behavior are essential to identify and
resolve issues like overfitting, underfitting, or persistent misclassifications during
training. By prioritizing these factors, models can be developed that are robust,
capable of generalizing to new data, and able to provide dependable results in
practical applications.

While the optimizers delivered strong performance overall, some limitations
remain when considering individual classes. Overfitting can occur in classes with
limited data, resulting in a model that performs well during training but has
difficulty with unseen samples. Underfitting is also possible when an optimizer
does not capture distinct features in visually comparable classes, which can lead to
more frequent misclassifications. To address these issues, it is important to focus
not only on overall accuracy but also on achieving reliable predictions for each
class. Training strategies such as data augmentation and regularization are valuable
for helping the model learn complex visual patterns and for reducing the risks of
overfitting or underfitting. Robustness to real-world data must also be considered,
as changes in background, lighting, and symptom appearance add complexity to
disease classification. Considering both the limitations in individual classes and the
need for model robustness is essential for achieving practical and effective results.

In addition to classification accuracy, efficiency in computation is an important
consideration for real-world deployment. Adam often leads to faster convergence
and stable training, though it can require more memory and processing power
compared to other optimizers. RMSprop enables steady progress during training
but may offer a different balance of speed and resource use, depending on the
dataset and task complexity. SGD typically needs more epochs to reach a similar
level of accuracy but can provide advantages in computational simplicity and faster
execution per epoch. Selecting the appropriate optimizer is particularly important
when resources are limited or when models need to operate in real time. The
decision should balance high classification performance with efficient use of
available hardware and operational requirements. Achieving both strong model
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performance and sustainable deployment depends on careful alignment between
training strategies and practical constraints.

Based on the results of evaluation across multiple training scenarios, selecting an
appropriate optimizer is crucial for model reliability and successful classification
outcomes. Comparison of optimizers demonstrates clear differences in learning
stability, prediction consistency, and the model’s ability to distinguish between
classes with comparable features. Evaluation of performance also shows that not
all optimizers can address every challenge present in the dataset and that some are
better at supporting the model’s capacity to learn and generalize. A systematic
assessment of optimization strategies provides a solid foundation for advancing
model development and informs decisions that are supported by experimental
evidence. Utilizing these evaluation results ensures the alighment of optimization
methods with specific classification tasks and contributes to the enhancement of
model quality.

4. CONCLUSION

This research comprehensively evaluates optimizer performance for maize leaf
disease classification using transfer learning with MobileNetV3-Small. RMSProp
achieved the highest accuracy, precision, recall, and f1-score, while Adam and SGD
showed lower and less consistent results. These findings indicate that optimizer
selection significantly influences learning stability, convergence, and prediction
consistency across disease categories. By enabling eatlier and more accurate
detection of maize leaf diseases, RMSProp has the potential to support timely
management decisions and reduce crop losses. Improved identification of disease
symptoms can enhance maize crop productivity by supporting better crop
management practices. Unfortunately, the evaluation used a relatively small dataset
containing only three categories of maize leaf diseases which may affect
consistency of classification performance in more complex or varied conditions.
Future research should adjust hyperparameters, explore advanced optimization
strategies or alternative model architectures, and incorporate additional data
sources such as weather data, soil conditions, pest information, or real-time
monitoring to further improve performance and strengthen the implementation of
smart agriculture systems.
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