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Abstract. Intrusion Detection Systems (IDS) must effectively adapt 

to dynamic network traffic, where concept drift continuously shifts 

the patterns of both benign and malicious behaviors. Traditional 

drift detection methods, which rely on a fixed sensitivity parameter 

(δ), often struggle to balance the need for rapid adaptation with the 

stability required to minimize false alarms. This study proposes the 

Adaptive-Delta ADWIN framework, a novel approach that 

dynamically adjusts the sensitivity parameter δ in response to 

evolving traffic patterns. The framework utilizes two lightweight 

online controllers: the Volatility Controller (VC) and the Alert-Rate 

Controller (ARC), to optimize δ in real time. Evaluated on the 

CICIDS2017 dataset, the Adaptive-Delta ADWIN framework 

integrates a multiclass ensemble of Hoeffding Adaptive Trees for 

robust intrusion detection. Experimental results show that the 

framework achieves an impressive accuracy range of 93-95%, 

reduces false positives by 50%, lowers false negatives by 30%, and 

improves ROC-AUC by up to 6.6% when compared to fixed-δ 

baseline methods. These findings demonstrate significant 

improvements in both detection performance and adaptability to 

concept drift. However, challenges remain in extending this 

approach to larger datasets and ensuring its efficiency in high-

throughput, real-time deployment, which will be addressed in future 

work. 

 

Keywords: Concept drift, Intrusion detection system, Streaming 

data, Controllers 
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1. INTRODUCTION 

 

Intrusion Detection Systems (IDS) are crucial for protecting networks against malicious 

activities, particularly in environments with complex and dynamic network traffic. In such 

settings, IDS must operate in an ever-evolving landscape where legitimate usage patterns 

and attack strategies change over time, resulting in "concept drift" — a phenomenon 

where the statistical distribution of data evolves, leading to potential performance 

degradation if not properly addressed [1]. 

 

As modern traffic environments continue to grow in complexity, IDS need to respond to 

concept drift in real time. Systems that fail to adapt quickly become vulnerable to 

emerging threats, while overly sensitive models may generate an excessive number of 

false alarms [5]. For instance, in the CICIDS2017 dataset, network traffic patterns vary 

across days: benign traffic dominates on Monday, while Wednesday sees a spike in DoS 

attacks, and Thursday introduces web-based exploits and infiltration attempts [6]. A fixed 

sensitivity parameter in IDS may struggle to detect new attack patterns when benign 

traffic fluctuates over time [7, 8]. 

 

Traditional concept drift detection methods, such as ADWIN and DDM [9, 10], have been 

widely used to address this challenge. However, these methods rely on a fixed sensitivity 

parameter (delta) [11, 12]. Previous research on IDS has typically focused on binary 

detection tasks (benign vs. attack) [13, 14], revealing three key limitations: (1) Difficulty in 

balancing responsiveness and stability when traffic patterns change rapidly. (2) Inability 

to manage excessive drift alarms in long-running streams. (3) Lack of adaptation for 

multiclass intrusion detection, where multiple attack types evolve at different rates. 

 

Despite significant advancements in concept drift detection, no existing framework has 

successfully integrated adaptive sensitivity control with multiclass IDS to strike an 

optimal balance between stability and responsiveness in real-time streaming 

environments. Moreover, there is a lack of research combining volatility-driven δ 

adaptation with long-term alarm-rate regulation in an ADWIN-based multiclass IDS [21]. 

 

To bridge this gap, we propose the Adaptive-Delta ADWIN framework, which dynamically 

adjusts the ADWIN sensitivity parameter (δ) using two lightweight online controllers: the 
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Volatility Controller (VC) and the Alert-Rate Controller (ARC). This adaptive framework is 

coupled with a streaming ensemble of Hoeffding Adaptive Trees for multiclass intrusion 

detection [23]. The proposed approach aims to improve stability, reduce false alarms, and 

enhance the system's responsiveness to real network changes. 

 

Previous work on concept drift detection has contributed significantly to the field. For 

example, Sandeep Bharadwa et al. [12] categorized types of concept drift in data streams 

and evaluated various detection and mitigation strategies. Tajwar Mehmood et al. [15] 

focused on early drift detection, with their method outperforming others in handling 

sudden drift. Supriya Agrahari et al. [16] introduced DD-SCC-I and DD-KRC-I to handle 

multidimensional data and demonstrated early drift detection effectiveness. Similarly, 

Hassan Mehmood et al. [17] proposed a drift detection method for time-series data in 

distributed networks, achieving superior performance. Other works, such as Pingfan 

Wang et al.'s Noise-Tolerant Drift Detection Method (NTDDM) [18] and Mansour Zoubeirou 

et al.'s autoregressive-based detection [19], also offered improvements in drift detection 

accuracy. Additionally, Yan Zhao et al. [20] developed the STS-AEL method, which 

incorporates stratified and time-aware sampling to enhance detection accuracy in 

streaming networks. 

 

The remainder of this paper is structured as follows: Section 2 introduces the proposed 

Adaptive-Delta ADWIN framework. Section 3 outlines the experimental setup and 

parameter settings. Section 4 presents the experimental results. Section 5 discusses the 

findings and limitations. Finally, Section 6 concludes the paper and suggests directions 

for future research. 

 

2. METHODOLOGY 

 

This section presents Adaptive−𝛿 ADWIN for real−time intrusion detection. The proposed 

approach enhances the traditional ADWIN drift detector by dynamically adjusting the 

sensitivity parameter (𝛿) through two online controllers: the VC and ARC. The adaptive 

detector is integrated into a streaming ensemble of Hoeffding Adaptive Trees, enabling 

multi−class intrusion detection with an improved balance between stability and 

responsiveness. This is the first framework to combine volatility−based 𝛿 adaptation (VC) 
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with long−term alarm−rate stabilization (ARC), enabling ADWIN to maintain both 

sensitivity and stability in multiclass streaming IDS. 

 

2.1. Adaptive−Delta ADWIN 

ADWIN traditionally decides whether data distribution changes by comparing two 

statistically different windows. However, its behaviour depends entirely on the sensitivity 

parameter δ. A fixed δ makes the detector either too sensitive—causing alarm flooding—

or too stable, delaying detection of real attacks. The proposed Adaptive-δ ADWIN 

framework addresses this limitation by automatically adjusting δ using two online 

controllers: the Volatility Controller (VC), which reacts to sudden changes in prediction 

error, and the Alert-Rate Controller (ARC), which prevents excessive drift alarms. 

 

ADWIN is a drift detection algorithm designed for streaming data [11, 24]. Its primary 

objective is to maintain a variable−length sliding window that continuously tests for 

statistically significant changes between the two sub−windows. When a shift is detected, 

the older portion of the window is discarded, and a drift alarm is triggered [25].  Role of 

𝛿 −	The sensitivity of ADWIN is governed by the parameter 𝛿, which represents the 

probability of false alarm. A smaller 𝛿 increases sensitivity, allowing faster adaptation to 

drift, whereas a larger 𝛿 enhances stability by reducing false alarms but may slow down 

the response to actual changes. Limitations of a Fixed 𝛿 − In dynamic network 

environment, long benign periods are often interspersed with sudden attack. A fixed 𝛿 

cannot effectively handle this variability. When 𝛿 is set small, it becomes overly sensitive 

and triggering alarms. When large, it reacts slowly with delayed attack detection. To 

address these limitations, we propose Adaptive−𝛿 ADWIN that dynamically adjusts the 

sensitivity parameter (𝛿) and alarm rate to achieve a trade−off between sensitivity and 

stability.  

 

2.2. Volatility Controller (VC) 

The VC adjusts the sensitivity parameter (𝛿) in response to changes in the prediction 

signal.  

1) Error Smoothing − let 𝑒! denote the prediction error at time 𝑡. A  smoothed error 

signal 𝑒̂! is computed using the Exponential Moving Average (EMA) [26], as shown 

in Equation 1.  

e)t= β ∙ et +(1 - β)∙ e)t-1      (1)                                                                    
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where β is the smoothing factor controlling the contribution of recent errors.  

 

2) Volatility Estimation − The error volatility 𝒗𝒕 is the derived as shown in Equation 2. 

 

vt=	γ	∙|e)t-	e)t-1|+(1-	γ)∙	vt-1          (2)                                                                                   
 

where 𝜸 controls the smoothing level of the volatility signal. 

 

3) 𝛿 Update Rule − If  𝑣! exceeds a target volatility 𝑣!&'()! , 𝛿 is reduced to increase 

sensitivity. Conversely, when volatility is low, 𝛿 is increased to maintain stability. 

The update rule is as shown in Equation 3. 

 

δt= δt-1 ∙exp(k ∙ vtarget- vt)          (3)                                                                                                                               

where 𝑘 represents the controller gain factor. In this way, the VC ensures that the 

detector reacts quickly during volatile periods while avoiding unnecessary sensitivity in 

stable traffic conditions. 

 

2.3. Alert−Rate Controller (ARC) 

The ARC regulates 𝛿 by monitoring the frequency of drift alarms to prevent alarm 

flooding [27].  

1) Drift Rate Estimation − Let 𝑟! denote the average number of drift alarms observed 

within a sliding window of size 𝑊. 

2) Target Regulation − A target alarm rate, 𝜌!&'()! is defined to guide the adjustment 

𝛿. If r* >	ρ*+,-.* , 𝛿 is a multiplicatively increased to reduce the sensitivity. If r* <

	ρ*+,-.* , 𝛿 is decreased to improve responsiveness, as shown in Equation 4. 

 

δt= ?
δt-1∙U,   rt> ρtarget

δt-1 ∙D,  rt< ρtarget 
@                                           (4)                                                                                                                                                  

where 𝑈 > 1 is the upscaling factor and 𝐷	 < 1 is the downscaling factor. Through this 

mechanism, ARC maintains the long−term stability of the detector and suppresses 

excessive alarms without compromising detection capability. 

 

2.4. Integration with Ensemble IDS 

In this study, the proposed Adaptive−Delta ADWIN detector is integrated into a streaming 

ensemble IDS based on Hoeffding Adaptive Trees as follow. 
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1) Base learners−The ensemble consists of multiple Hoeffding Adaptive Trees that 

are trained incrementally on incoming network traffic statistics [28, 29]. 

2) Learning loop−For each traffic instance in the stream, the following steps are 

executed: 

a) Prediction: The ensemble produces a predicted label class label for the incoming 

instances. 

b) Update: The prediction error is computed and passed to the Adaptive−Delta 

ADWIN drift detector. 

c) Drift check: When a drift is detected, the affected base learner(s) are retrained 

or reset using the most recent data. 

 

2.4. Framework Architecture and Operation 

This section presents the Adaptive−𝛿 ADWIN framework to enhance real−time intrusion 

detection in dynamic network traffic environments [30, 31].  

 

2.4.1. Framework Architecture 

Figure 1. Adaptive-δ ADWIN framework architecture. The ensemble of Hoeffding Adaptive Trees 

generates predictions for each incoming instance, and the prediction error is passed to two online 

controllers [32, 33].. The Volatility Controller (VC) adjusts δ based on fluctuations in smoothed 

error, ensuring rapid response to sudden behavioral shifts. The Alert-Rate Controller (ARC) 

regulates δ according to the frequency of drift alarms to prevent alarm flooding. The updated δ 

is fed back into ADWIN to detect distributional changes and detected drifts trigger reset/retraining 

of affected base learners. 

 
Figure 1. Adaptive-𝛿 ADWIN framework 
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2.5.1. Framework Process Operation 

Figure 2. End-to-end workflow of the Adaptive-δ ADWIN process. Incoming streaming 

data first enters the Hoeffding Adaptive Tree ensemble, which produces predictions and 

computes the prediction error. This error is smoothed and then processed by the VC to 

react to short-term volatility, while the ARC regulates long-term alarm behavior. The 

controllers update δ, which ADWIN uses for drift detection. When a drift is detected, the 

corresponding base learners are reset or retrained using the most recent data, 

completing the adaptive feedback loop. 

 
Figure 2. Adaptive−𝛿 ADWIN Workflow 

 

Algorithm 1: Adaptive-Delta ADWIN for Multi−Class Intrusion Detection 

Input:   D (X, y), initial δ! 
              v"#$%&" 
              ρ"#$%&" 
Output: Adaptive multi−class IDS predictions with controlled stability and Sensitivity 

1. Initialize Hoeffding Adaptive Tree Ensemble E 

2. Initialize ADWIN δ = 	δ! 

3. Initialize VC and ARC 

4. Each sample (x", y") do 

5. y'$&( ← E ∙ predict	(x") 
error" 	← compute&$$)$(y'$&(, y") 
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Algorithm 1: Adaptive-Delta ADWIN for Multi−Class Intrusion Detection 

6. Update smoothed error via EMA 

7. VC update− adjust δ  

8. ARC update− adjust δ  

9. Feed error" into ADWIN(δ) 

10. If ADWIN signals drift, then 

11. Reset or retrain base learner (s) 

12. End if 

13. Update Ensemble E with (x", y") 
 

 

 

2.5.2. Design Rationale 

The Adaptive−𝛿 ADWIN framework is geared to tackle both sensitivity and stability in 

streaming drift detectors. Since the traditional ADWIN uses fixed 𝛿 parameter which 

delays detection of sudden drifts. The framework introduces two online controllers: VC 

which adjusts 𝛿 in response to prediction error, and ARC which manages frequency of 

alarms. Both controllers provide optimal balance between the responsiveness and 

stability in a closed−loop 𝛿 parameter. The framework ensures a robust and responsive 

solution by achieving both adaptability and resilience in a multi−class intrusion detection 

within the dynamic network environments. 

 

3. RESULTS AND DISCUSSION 

 

3.1. Experimental Setup 

This section presents the experimental settings used to evaluate the framework 

performance for multi−class intrusion detection [35, 36]. 

 

3.1.1. Dataset 

1) CICIDS2017: A widely recognized benchmark dataset for multiclass intrusion 

detection, CICIDS2017 contains both normal traffic and a variety of attack 

categories [37]. It is well-suited for evaluating intrusion detection systems due to 

its diversity and real-world relevance. 

2) Chronological Streaming Order: To simulate real-world network traffic patterns and 

the natural progression of concept drift, the CICIDS2017 dataset was processed in 

temporal order [38, 39]. This ensures that the data reflects the evolution of both 
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benign and malicious activities over time, mimicking the dynamic nature of actual 

network traffic. 

3) Preprocessing 

The preprocessing steps applied to the CICIDS2017 dataset are summarized in Table 

1, which outlines how the data was prepared for continuous stream processing in 

the IDS system. 

 

Table 1. Preprocessing Steps for CICIDS2017 Stream 

Step Description Purpose in IDS 

File Merging The CICIDS2017 dataset was 

merged into a single CSV file for 

continuous stream of network 

traffic. 

Ensures the chronological flow 

of traffic, simulating realistic 

streaming evolution. 

Label 

Encoding 

Categorical attack labels were 

mapped using LabelEncoder. 

Standardizes labels for 

multiclass classification. 

Class 

Imbalance 

Handling 

A subset of 100,000 samples was 

selected from the dataset. 

Reduces computational cost 

while maintaining a 

representative class 

distribution. 

 

3.1.2. Hyperparameter Settings 

The following hyperparameters were defined to control learning, drift sensitivity, and 

other relevant settings in the Adaptive-Delta ADWIN framework [40-42] , as shown in 

Table 2. 

 

Table 2. Hyperparameter Configuration for Adaptive-Delta ADWIN & Bagging- Ensemble 

Hyperparameter Description Value/Range 

n_models Bagging ensemble (number of models) 3 

seed random seed for reproducibility 42 

rolling_window Window size for error or probability tracking 1000 

refractory period Minimum interval between drift detections 0 

delta_init ADWIN delta initial 0.001 

delta_min ADWIN delta minimum 0.000001 
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Hyperparameter Description Value/Range 

delta_max Maximum ADWIN delta 0.1 

plot_window Number of recent samples to plot 2000 

subset_samples Maximum number of samples to process 100,000 

drift_highlight_window Samples highlighted as detected drift 50 

ema_alpha EMA smoothing factor for error 0.05 

vc_beta Volatility EMA factor 0.02 

vc_v_target Target volatility for adaptive delta 0.08 

vc_k Scaling factor for delta adaptation 1.0 

metric_ema_alpha EMA smoothing factor for the metrics 0.1 

 

3.1.3. Evaluation Metrics 

The framework's performance was assessed using several metrics to evaluate its ability 

to adapt to dynamic network traffic conditions and to effectively detect intrusions [43-

46]. These metrics are outlined in Table 3. [43-46]. 

 

Table 3. Evaluation Metrics and Their Role in Intrusion Detection 

Metric Definition Purpose in IDS 

Accuracy 

Ratio of correct predicted samples 

to total samples 

Accuracy= 
TP+TN

TP+TN+FP+FN
 

Measure the overall 

classification performance to 

achieve detection quality. 

Precision 

Fraction of the predicted attacks 

among all the predicted as attacks 

Precision= 
TP

TP+FN
 

Evaluate the IDS’s ability to 

avoid false alarms 

Recall 
The fraction of actual attacks 

correctly classified by the IDS 

Measure sensitivity of the IDS 

to actual threats. 

F1−score 

Harmonic means of recall and 

precision 

F1= 2 ∙
Precison ∙Recall
Precision+Recall

 

Balances precision and recall 

assessing the overall detection 

effectiveness. 

ROC−AUC 
An Area under the Receiver 

Operating Characteristic curve 

Evaluate the IDS’s ability to 

perform the difference between 

normal and attack classes 

across all the thresholds. 
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Metric Definition Purpose in IDS 

Confusion 

Matrix 

Showing counts of true positives, 

true negatives, false positives, and 

false negatives of each class. 

Provide insight into which 

attacks are correctly or 

incorrectly detected. 

Drift 

Frequency 

Count of the detected drift and 

near-drift events over the data 

streams. 

Monitors changes in traffic 

conditions and assist the IDS 

adaptability to evolving attacks. 

 

3.1.4. Baseline 

To benchmark the performance of the Adaptive-Delta ADWIN framework, we compared 

it against traditional drift detection methods, including fixed-δ ADWIN and Bagging 

Ensemble [47]. These baselines use a fixed ADWIN delta parameter (δ) and serve as a 

reference to evaluate the effectiveness of the adaptive sensitivity control and the 

system's ability to maintain classification performance under evolving network traffic 

conditions [48, 49]. 

 

3.1.5. Implementation Environment 

The framework was implemented utilizing relevant libraries and environments for 

dashboard interaction data streaming [50-52]. 

 

Table 4. Implementation Environment for Adaptive-Delta ADWIN Evaluation 

Component Details 

Simulation language Python 3.11 

Frameworks River (online ML & drift detection), scikit−learn for metrics, 

Plotly (visualization) 

Dataset Loader Pandas 

Execution Platform Ubuntu 22.04 Intel i7 CPU, 16 GB RAM 

Visualization Streamlit Dashboard with real-time plots 

 

3.2. Performance Evaluation 

This section presents an Adaptive−𝛿 ADWIN results against fixed−𝛿 baselines. The 

CICIDS2017 dataset was utilized for multi−class data streaming experiments, and relevant 

metrics were used for evaluation. 
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3.2.1. Accuracy 

Figure 3 presents the results of adaptive and fixed−𝛿 settings. The adaptive 𝛿 (blue line) 

regulates smoother transitions with fewer fluctuations while accuracy ranges between 

0.92−0.95. Fixed 𝛿 (light blue line) regulates sharp oscillations by delaying drift detection 

when 𝛿 set to small−resulting in lower accuracy below 0.90. This confirms that adaptive 

𝛿 improves both mean accuracy and reduced IDS performance variability than static 𝛿. 

 

 
Figure 3. Accuracy vs 𝜹 (Twin-Axis Plot) 

 
3.2.2. Rolling False Positive (FP) and False Negative (FN) Rates 

Figure 4 presents the rolling FP and FN rate results demonstrating adaptive 𝛿 and 

fixed−𝛿 detector performance results. The FP (blue line) achieves below 0.05 while 

fixed−𝛿 configuration exceeds 0.15 significant spikes. On the other hand, FN (light blue 

line) remains stable around 0.08 while fixed−𝛿 rising above 0.12 as the results of a 

delayed adaptation of the new attacks. Overall, adaptive 𝛿 reduces FP and FN at the 

acceptable rate without compromising detection performance accuracy. 
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                                       Figure 4. Rolling FP and FN 
 
 

3.2.3. Drift Frequency 

Figure 5 presents timely detection concept drift results between adaptive 𝛿 and fixed−𝛿 

settings. Adaptive 𝛿 (red line) generates fewer alarms aligning with the known drift points 

(Tuesday’s brute force and Thursday’s infiltration events). Conversely, fixed−𝛿 

configuration generates excessive alerts when 𝛿 is small, exceeding 100 alarms, and 

generates fewer 10 alarms when 𝛿 is large. Overall, adaptive 𝛿 maintains approximately 

25−30 alarms, and sustain a balanced drift frequency that reflects the real traffic 

network.  

                                            Figure 5. Drift Frequency 
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3.2.4. Rolling Confusion Matrices 
 

Figure 6 presents adaptive 𝛿 for different traffic network patterns maintaining a high 

detection accuracy per class. Adaptive−𝛿 confusion matrices produce diagonals, 

producing high classification accuracy, while fixed−𝛿 demonstrates off−diagonal as the 

results of increased misclassifications. Adaptive 𝛿 achieves the improved major attack 

categories, with recall results reaching 0.90−DoS, and 0.85−PortScan. Fixed−𝛿 detectors 

demonstrate a performance decline and drop to 0.70 with certain classes. These results 

proofs that adaptive 𝛿 sustains efficiency per−class detection, which is important for 

resiliency in dynamic network environment. 

 

 
Figure 6. Rolling Confusion Matrices 

 
 

3.2.5. Evaluation Metrics  

Figure 7 presents the overall accuracy matrices of adaptive 𝛿 and fixed−𝛿 baseline. 

Precision and recall achieve between 0.92−0.93, whereas F1−score fixed−𝛿  fluctuate 

when overly sensitive. F1−score and ROC−ROC exceed 0.90. Conversely, fixed−𝛿 

maintains unstable performance when F1 and ROC−ROC is below 0.85 and 0.90. Overall, 

adaptive 𝛿 adjustment improves balance between sensitivity and stability, avoiding 

performance degradation observed in fixed−parameter systems. 
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Figure 7. Precision, Recall, F1, and ROC-AUC over Time 

 
3.2.6. Statistical findings 

The results illustrate that adaptive 𝛿 improves the performance of the IDS with the 

overall metrics by values between 3−5% compared to fixed−𝛿 baselines. This approach 

confirms the achievement of higher detection accuracy that reduces FP/FN 

approximately 50%, and 10% recall for balanced stability and sensitivity. Adaptive 𝛿 

achieves accuracy between 0.93−0.95, and delivers a robust multi−class detection, for 

critical attack. The results validate adaptive 𝛿 as the effective and reliable solution for 

real−time intrusion detection in dynamic environments. 
 

Table 5. Summarized Performance Metrics 

Metric 
Fixed−𝜹 

(Small) 

Fixed−𝜹 

(Large) 

Adaptive−𝜹 

(Proposed) 

Relative 

Improvement 

Accuracy (mean ±	var) 0.902 ± 0.015 0.891 ± 0.012 0.938 ±	0.007 +4.0% 

Precision (mean ± var) 0.883 ± 0.020 0.872 ± 0.018 0.931 ± 0.009 +5.4% 

Recall (mean ± var) 0.865 ± 0.025 0.878 ± 0.021 0.919 ± 0.010 +4.8% 

F1-score (mean ± var) 0.874 ± 0.022 0.876 ± 0.019 0.925 ± 0.009 +5.1% 

ROC-AUC (mean ± var) 0.887 ± 0.028 0.892 ± 0.024 0.951 ± 0.012 +6.6% 

FP rate (mean) 0.128 0.115 0.064 -50% 

FN rate (mean) 0.122 0.134 0.085 –30% 

Drift alarms () 112 8 27 
Controlled 

frequency 
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Table 5 presents the superiority of the Adaptive−	𝛿 ADWIN performance framework. FPs 

are decreased by 50% and FN by 30%, while ROC−AUC improves by 6.6% which shows 

increased detection stability. Adaptive−	𝛿 also generates well−timed drift alerts aligned 

with actual concept shifts compared to fixed−	𝛿 detectors. 

 

3.3. Class-Level Performance Analysis 

To provide deeper insight into how the Adaptive−	𝛿 ADWIN framework behaves across 

individual attack categories, a class-level analysis was conducted for the five major 

traffic classes contained in CICIDS2017: Benign, DoS, PortScan, Web Attack, and 

Infiltration. This analysis evaluates improvements in per-class recall, precision, false 

alarms, and stability compared to fixed-δ configurations. 

 

3.3.1. Benign Traffic 

Benign traffic typically dominates early parts of the CICIDS2017 stream (e.g., Monday 

and Tuesday sessions). Findings: 

1) Adaptive−𝛿 ADWIN maintains recall above 0.95, significantly reducing the 

misclassification of normal traffic as attacks. 

2) Fixed-δ detectors (especially with small 𝛿) suffer from false alarm spikes, 

causing benign samples to be incorrectly flagged during mild distribution shifts. 

3) The Adaptive−𝛿 framework reduces FP in benign traffic by approximately 50%, 

stabilizing alert rates and minimizing operator workload. 

 

The ARC controller plays a crucial role in preventing unnecessary alarms when traffic 

remains stable. 

 

3.3.2. DoS Attacks 

DoS attacks appear heavily on Wednesday in CICIDS2017, creating sharp concept drift. 

Findings: 

1) Adaptive−𝛿 ADWIN achieves recall ≈ 0.90, outperforming fixed detectors that 

drop to 0.75–0.80 during the attack spike. 

2) Sudden DoS bursts cause fixed−𝛿 ADWIN (small 𝛿) to over-trigger drift and 

overfit, causing fluctuating predictions. 

3) Large fixed−𝛿 detectors react too slowly, delaying detection and increasing 

false negatives. 
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The VC controller enables faster sensitivity to increase during high volatility periods, 

supporting rapid adaptation when DoS floods appear. 

 

3.3.3. PortScan Attacks 

PortScan traffic shows periodic bursts with moderate drift intensity. Findings: 

1) Adaptive−𝛿 results maintain recall ~0.85 throughout the stream. 

2) Fixed-δ ADWIN (large 𝛿) misses many short PortScan bursts, with recall often 

dropping to 0.65–0.70. 

3) Precision is also higher under adaptive control because drift alarms remain 

aligned with real shifts instead of reacting pre-maturely. 

 

PortScan patterns benefit from balanced sensitivity: the Adaptive−𝛿 scheduling prevents 

both under-detection and alarm flooding. 

 

3.3.4. Web Attack Traffic 

Web Attack samples (SQL Injection, XSS, Brute Force) appear sparsely and cause micro-

drifts. Findings: 

1) Adaptive-δ ADWIN improves recall for rare Web Attacks by approximately 10% 

compared to fixed−𝛿. 

2) Fixed detectors often overlook low-frequency classes, especially when δ is large, 

leading to higher FN rates. 

3) The smoothed error signal used in VC enables the framework to detect subtle 

changes even when the attack volume is small. 

 

Web Attacks demonstrate the advantage of dynamic δ when handling minority classes 

with intermittent drift signatures. 

 

3.3.5. Infiltration Attacks 

Infiltration attacks occur later in the dataset and represent slow but dangerous drifts. 

Findings: 

1) Adaptive-δ achieves the highest improvement on this class, increasing recall from 

around 0.70 (fixed) to ~0.82. 

2) The fixed−𝛿 ADWIN (small 𝛿) generates misleading false alarms early, which 

destabilizes the model before the infiltration drift truly occurs. 
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3) Adaptive-δ maintains consistent predictions and triggers drift exactly when 

infiltration traffic introduces novel patterns. 

 

This class confirms the significance of long-term drift regulation by ARC, which prevents 

premature or unnecessary window resets. 

 

Table 6. Summary of Class-Level Improvements 

Class Fixed−𝜹 Recall Adaptive−𝜹 Recall Improvement 

Benign 0.88–0.92 0.95+ +3–7% 

DoS 0.75–0.80 0.90 +10–15% 

PortScan 0.65–0.70 0.85 +15–20% 

Web Attack 0.70–0.75 0.80–0.85 +10% 

Infiltration 0.70 0.82 +12% 

 

The class-level evaluation confirms that Adaptive−𝛿 ADWIN consistently improves recall 

and precision across all traffic categories. The largest gains are observed in PortScan, 

DoS, and Infiltration, which are more strongly affected by concept drift. The framework 

remains stable during benign periods and responsive during sudden changes, validating 

the effectiveness of the dual-controller design. These findings support the conclusion 

that Adaptive−𝛿 ADWIN achieves a superior balance of sensitivity and stability compared 

to fixed−𝛿 baselines. 

 

3.4. Discussion 

Adaptive−𝛿 ADWIN shows an improved detection performance for the entire network 

data streams. In dynamic network, fixed−	𝛿 detectors cause alarm flooding and fail to 

adapt when 𝛿 is too small, while larger 𝛿 delay the response to attacks. Adaptive−𝛿 

adjusts the sensitivity based on error volatility and drift frequency, while managing the 

adaptation to new threats with minimal false alarms. This confirms the efficient accuracy 

and reduced FP spikes on the dataset, proving the framework’s ability to achieve a 

balanced performance in network environments. 

 

Adaptive−𝛿 ADWIN uses both VC and ARC controllers which depend on the 

hyperparameter settings. VC(𝛽) manages the fluctuations of the prediction error, where 
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𝛽 which is smaller enhances the stability, while larger 𝛽 improves the sensitivity. 

Moreover, volatility targets error fluctuation tolerance, and ARC maintains the long-term 

drift alarm frequency. The optimal accuracy is achieved when 𝛽 is 0.3 for both balanced 

volatility and a properly set 𝜌_target. 

 

The challenge is balancing a rapid drift detection while avoiding the false alarm. 

Adaptive−𝛿 ADWIN mitigates by merging both VC and ARC for short− and long−term 

responsive control. The results confirm that aggressive parameters compromise the 

balance: VC that is sensitive, boosts the recall, however, increases FP. On the other hand, 

restrictive ARC improves stability at the expense of delayed adaptation. Thus, choosing 

the appropriate parameter is important for a reliable performance of the IDS. 

 

The implementation was performed on the CICIDS2017, limiting the overall generalization 

to network traffic conditions [55, 56]. This framework was compared to binary drift 

detection baselines, limiting benchmarking [56]. Additionally, controllers and ensemble 

can cause bottleneck in large−scale deployment [58, 59]. 

 

4. CONCLUSION 

 

The Adaptive-Delta ADWIN framework improves multiclass IDS accuracy to 0.93–0.95, 

increases ROC-AUC by 6.6%, and reduces false positives and false negatives by 50% and 

30%, respectively. These results demonstrate the framework’s capability to maintain 

stability while adapting to dynamic network changes. The method is suitable for Security 

Operations Centre (SOC) operation centres, cloud-based IDS, and IoT network monitoring.  

Future work will focus on testing the framework on additional and more diverse datasets, 

including UNSW-NB15, CIC-IDS2018, CIC-DDoS2019, TON-IoT, and NSL-KDD, to evaluate 

cross-dataset generalization and robustness across different traffic patterns. 

Furthermore, deployment in high-throughput enterprise environments, integration with 

GPU-accelerated streaming pipelines, and expansion toward zero-day attack discovery 

will be explored to enhance scalability and real-world applicability. [60–63]. 
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