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Abstract. Intrusion Detection Systems (IDS) must effectively adapt
to dynamic network traffic, where concept drift continuously shifts
the patterns of both benign and malicious behaviors. Traditional
drift detection methods, which rely on a fixed sensitivity parameter
(8), often struggle to balance the need for rapid adaptation with the
stability required to minimize false alarms. This study proposes the
Adaptive-Delta ADWIN Fframework, a novel approach that
dynamically adjusts the sensitivity parameter 6 in response to
evolving traffic patterns. The framework utilizes two lightweight
online controllers: the Volatility Controller (VC) and the Alert-Rate
Controller (ARC), to optimize & in real time. Evaluated on the
CICIDS2017 dataset, the Adaptive-Delta ADWIN Fframework
integrates a multiclass ensemble of Hoeffding Adaptive Trees for
robust intrusion detection. Experimental results show that the
framework achieves an impressive accuracy range of 93-95%,
reduces false positives by 50%, lowers false negatives by 30%, and
improves ROC-AUC by up to 6.6% when compared to Ffixed-6
baseline methods. These Ffindings demonstrate significant
improvements in both detection performance and adaptability to
concept drift. However, challenges remain in extending this
approach to larger datasets and ensuring its efficiency in high-
throughput, real-time deployment, which will be addressed in future

work.
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1 INTRODUCTION

Intrusion Detection Systems (IDS) are crucial For protecting networks against malicious
activities, particularly in environments with complex and dynamic network traffic. In such
settings, IDS must operate in an ever-evolving landscape where legitimate usage patterns
and attack strategies change over time, resulting in "concept drift" — a phenomenon
where the statistical distribution of data evolves, leading to potential performance

degradation if not properly addressed [1].

As modern traffic environments continue to grow in complexity, IDS need to respond to
concept drift in real time. Systems that Fail to adapt quickly become vulnerable to
emerging threats, while overly sensitive models may generate an excessive number of
fFalse alarms [5]. For instance, in the CICIDS2017 dataset, network traffic patterns vary
across days: benign traffic dominates on Monday, while Wednesday sees a spike in DoS
attacks, and Thursday introduces web-based exploits and infiltration attempts [6]. A Fixed
sensitivity parameter in IDS may struggle to detect new attack patterns when benign

traffic Fluctuates over time [7, 8].

Traditional concept drift detection methods, such as ADWIN and DDM [9, 10], have been
widely used to address this challenge. However, these methods rely on a fixed sensitivity
parameter (delta) [11, 12]. Previous research on IDS has typically focused on binary
detection tasks (benign vs. attack) [13, 14], revealing three key limitations: (1) Difficulty in
balancing responsiveness and stability when traffic patterns change rapidly. (2) Inability
to manage excessive drift alarms in long-running streams. (3) Lack of adaptation for

multiclass intrusion detection, where multiple attack types evolve at different rates.

Despite significant advancements in concept drift detection, no existing framework has
successfully integrated adaptive sensitivity control with multiclass IDS to strike an
optimal balance between stability and responsiveness in real-time streaming
environments. Moreover, there is a lack of research combining volatility-driven §

adaptation with long-term alarm-rate regulation in an ADWIN-based multiclass IDS [21].

To bridge this gap, we propose the Adaptive-Delta ADWIN framework, which dynamically

adjusts the ADWIN sensitivity parameter (8) using two lightweight online controllers: the
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Volatility Controller (VC) and the Alert-Rate Controller (ARC). This adaptive framework is

coupled with a streaming ensemble of Hoeffding Adaptive Trees For multiclass intrusion
detection [23]. The proposed approach aims to improve stability, reduce false alarms, and

enhance the system's responsiveness to real network changes.

Previous work on concept drift detection has contributed significantly to the Field. For
example, Sandeep Bharadwa et al. [12] categorized types of concept drift in data streams
and evaluated various detection and mitigation strategies. Tajwar Mehmood et al. [15]
focused on early drift detection, with their method outperforming others in handling
sudden drift. Supriya Agrahari et al. [16] introduced DD-SCC-I and DD-KRC-I to handle
multidimensional data and demonstrated early drift detection effectiveness. Similarly,
Hassan Mehmood et al. [17] proposed a drift detection method For time-series data in
distributed networks, achieving superior performance. Other works, such as Pingfan
Wang et al's Noise-Tolerant Drift Detection Method (NTDDM) [18] and Mansour Zoubeirou
et al's autoregressive-based detection [19], also offered improvements in drift detection
accuracy. Additionally, Yan Zhao et al. [20] developed the STS-AEL method, which
incorporates stratified and time-aware sampling to enhance detection accuracy in

streaming networks.

The remainder of this paper is structured as follows: Section 2 introduces the proposed
Adaptive-Delta ADWIN Framework. Section 3 outlines the experimental setup and
parameter settings. Section 4 presents the experimental results. Section 5 discusses the
findings and limitations. Finally, Section 6 concludes the paper and suggests directions

For Future research.

2. METHODOLOGY

This section presents Adaptive—& ADWIN For real—time intrusion detection. The proposed
approach enhances the traditional ADWIN drift detector by dynamically adjusting the
sensitivity parameter (&) through two online controllers: the VC and ARC. The adaptive
detector is integrated into a streaming ensemble of Hoeffding Adaptive Trees, enabling
multi—class intrusion detection with an improved balance between stability and

responsiveness. This is the First framework to combine volatility—based § adaptation (VC)
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with long—term alarm—rate stabilization (ARC), enabling ADWIN to maintain both

sensitivity and stability in multiclass streaming IDS.

2.1. Adaptive—Delta ADWIN

ADWIN traditionally decides whether data distribution changes by comparing two
statistically different windows. However, its behaviour depends entirely on the sensitivity
parameter d. A fixed 6 makes the detector either too sensitive—causing alarm Flooding—
or too stable, delaying detection of real attacks. The proposed Adaptive-6 ADWIN
framework addresses this limitation by automatically adjusting & using two online
controllers: the Volatility Controller (VC), which reacts to sudden changes in prediction

error, and the Alert-Rate Controller (ARC), which prevents excessive drift alarms.

ADWIN is a drift detection algorithm designed For streaming data [11, 24]. Its primary
objective is to maintain a variable—length sliding window that continuously tests for
statistically significant changes between the two sub—windows. When a shift is detected,
the older portion of the window is discarded, and a drift alarm is triggered [25]. Role of
6 — The sensitivity of ADWIN is governed by the parameter §, which represents the
probability of False alarm. A smaller § increases sensitivity, allowing Faster adaptation to
drift, whereas a larger § enhances stability by reducing false alarms but may slow down
the response to actual changes. Limitations of a Fixed § — In dynamic network
environment, long benign periods are often interspersed with sudden attack. A fixed §
cannot effectively handle this variability. When § is set small, it becomes overly sensitive
and triggering alarms. When large, it reacts slowly with delayed attack detection. To
address these limitations, we propose Adaptive—d ADWIN that dynamically adjusts the
sensitivity parameter (8) and alarm rate to achieve a trade—off between sensitivity and

stability.

2.2.  Volatility Controller (VC)

The VC adjusts the sensitivity parameter (§) in response to changes in the prediction

signal.

1) Error Smoothing — let e; denote the prediction error at time t. A smoothed error
signal é; is computed using the Exponential Moving Average (EMA) [26], as shown

in Equation 1.

&=B-e +(1-P) &, (1)
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where 3 is the smoothing factor controlling the contribution of recent errors.

2) Volatility Estimation — The error volatility v, is the derived as shown in Equation 2.

vi=Y € 81|+ (1- ) viq (2)

where y controls the smoothing level of the volatility signal.

3) & Update Rule — IF v, exceeds a target volatility Vigrger, 6 is reduced to increase
sensitivity. Conversely, when volatility is low, § is increased to maintain stability.

The update rule is as shown in Equation 3.

8t: St-'l 'exp(k . Vtarget' Vt) (3)
where k represents the controller gain factor. In this way, the VC ensures that the
detector reacts quickly during volatile periods while avoiding unnecessary sensitivity in

stable traffic conditions.

23.  Alert—Rate Controller (ARC)

The ARC regulates § by monitoring the frequency of drift alarms to prevent alarm

Flooding [27].

1) Drift Rate Estimation — Let 1 denote the average number of drift alarms observed
within a sliding window of size W.

2) Target Regulation — A target alarm rate, pqrgee is defined to guide the adjustment
8. IF T¢ > Prarger, 0 is @ multiplicatively increased to reduce the sensitivity. If ry <

Prargets 0 IS decreased to improve responsiveness, as shown in Equation 4.

O°U, r>p
5= target )
8pq D, 1< ptarget

where U > 1 is the upscaling factor and D < 1 is the downscaling factor. Through this
mechanism, ARC maintains the long—term stability of the detector and suppresses

excessive alarms without compromising detection capability.
24. Integration with Ensemble IDS

In this study, the proposed Adaptive—Delta ADWIN detector is integrated into a streaming

ensemble IDS based on Hoeffding Adaptive Trees as follow.
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1) Base learners—The ensemble consists of multiple Hoeffding Adaptive Trees that

are trained incrementally on incoming network traffic statistics [28, 29].
2) Learning loop—For each traffic instance in the stream, the Following steps are

executed:

a) Prediction: The ensemble produces a predicted label class label for the incoming
instances.

b) Update: The prediction error is computed and passed to the Adaptive—Delta
ADWIN drift detector.

c) Drift check: When a drift is detected, the affected base learner(s) are retrained

or reset using the most recent data.

24. Framework Architecture and Operation
This section presents the Adaptive—3d ADWIN framework to enhance real—time intrusion

detection in dynamic network traffic environments [30, 311.

2.4.1. Framework Architecture

Figure 1. Adaptive-8 ADWIN framework architecture. The ensemble of Hoeffding Adaptive Trees
generates predictions for each incoming instance, and the prediction error is passed to two online
controllers [32, 33]. The Volatility Controller (VC) adjusts 8 based on Fluctuations in smoothed
error, ensuring rapid response to sudden behavioral shifts. The Alert-Rate Controller (ARC)
regulates § according to the frequency of drift alarms to prevent alarm flooding. The updated &
is Fed back into ADWIN to detect distributional changes and detected drifts trigger reset/retraining

of affected base learners.

4 )

Adaptive-Delta ADWIN
Data % Volatility Controller lert-Rate Controlle Drift Check
r (vC) (ARC)
Y
Predict Reset / Retrain
. 0 .
Y
Ensemble IDS <

Figure 1. Adaptive-§ ADWIN framework
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2.51. Framework Process Operation

Figure 2. End-to-end workflow of the Adaptive-6 ADWIN process. Incoming streaming
data first enters the Hoeffding Adaptive Tree ensemble, which produces predictions and
computes the prediction error. This error is smoothed and then processed by the VC to
react to short-term volatility, while the ARC regulates long-term alarm behavior. The
controllers update 6, which ADWIN uses For drift detection. When a drift is detected, the
corresponding base learners are reset or retrained using the most recent dats,

completing the adaptive Feedback loop.

Streaming network data

Y
Hoeffding Adaptive
Tree ensemble

Y

Prediction

Y

Volatility Controller .l Alert-Rate
(VC) Controller (ARC)

Y

Error signal

Y

Adaptive-Delta
ADWIN

A

Y
Drift detection

Y

Reset / retrain base
learners

Figure 2. Adaptive—& ADWIN WorkFlow

Algorithm 1: Adaptive-Delta ADWIN for Multi—Class Intrusion Detection

Input: D (X,y), initial 84

Vtarget
ptarget
Output: Adaptive multi—class IDS predictions with controlled stability and Sensitivity

1. Initialize Hoeffding Adaptive Tree Ensemble E
2. Initialize ADWIN & = &g

3. Initialize VC and ARC

4. Each sample (x,y,) do

5. Yprea < E - predict (x;)

EITory < CompUteerror(Ypred' Yt)
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Algorithm 1: Adaptive-Delta ADWIN For Multi—Class Intrusion Detection

6. Update smoothed error via EMA
7. VC update— adjust 6

8. ARC update— adjust 6

9. Feed error, into ADWIN(S)

10. IF ADWIN signals drift, then

11. Reset or retrain base learner (s)
12. End if

13. Update Ensemble E with (x;,y,)

2.5.2. Design Rationale

The Adaptive-§ ADWIN framework is geared to tackle both sensitivity and stability in
streaming drift detectors. Since the traditional ADWIN uses fixed § parameter which
delays detection of sudden drifts. The framework introduces two online controllers: VC
which adjusts § in response to prediction error, and ARC which manages frequency of
alarms. Both controllers provide optimal balance between the responsiveness and
stability in a closed—loop & parameter. The framework ensures a robust and responsive
solution by achieving both adaptability and resilience in a3 multi—class intrusion detection

within the dynamic network environments.

3. RESULTS AND DISCUSSION

3.1. Experimental Setup
This section presents the experimental settings used to evaluate the framework

performance for multi—class intrusion detection [35, 36].

3.1.1. Dataset

1) CICIDS2017: A widely recognized benchmark dataset for multiclass intrusion
detection, CICIDS2017 contains both normal traffic and a variety of attack
categories [37]. It is well-suited For evaluating intrusion detection systems due to
its diversity and real-world relevance.

2) Chronological Streaming Order: To simulate real-world network traffic patterns and
the natural progression of concept drift, the CICIDS2017 dataset was processed in

temporal order [38, 39]. This ensures that the data reflects the evolution of both
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benign and malicious activities over time, mimicking the dynamic nature of actual

network traffic.

3) Preprocessing
The preprocessing steps applied to the CICIDS2017 dataset are summarized in Table

1, which outlines how the data was prepared for continuous stream processing in

the IDS system.

Table 1. Preprocessing Steps for CICIDS2017 Stream

Step Description Purpose in IDS
File Merging The CICIDS2017 dataset was Ensures the chronological fFlow
merged into a single CSV file for of traffic, simulating realistic
continuous stream of network streaming evolution.
traffic.
Label Categorical attack labels were Standardizes labels for
Encoding mapped using LabelEncoder. multiclass classification.
Class A subset of 100,000 samples was Reduces computational cost
Imbalance selected from the dataset. while maintaining a
Handling representative class
distribution.

3.1.2. Hyperparameter Settings
The following hyperparameters were defined to control learning, drift sensitivity, and

other relevant settings in the Adaptive-Delta ADWIN Framework [40-42] , as shown in

Table 2.

Table 2. Hyperparameter Configuration for Adaptive-Delta ADWIN & Bagging- Ensemble

Hyperparameter Description Value/Range
n_models Bagging ensemble (number of models) 3
seed random seed for reproducibility 42
rolling_window window size for error or probability tracking 1000
refractory period Minimum interval between drift detections 0]
delta_init ADWIN delta initial 0.001
delta_min ADWIN delta minimum 0.000001
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Hyperparameter Description Value/Range
delta_max Maximum ADWIN delta 0.1
plot_window Number of recent samples to plot 2000
subset_samples Maximum number of samples to process 100,000
drift_highlight_window Samples highlighted as detected drift 50

ema_alpha EMA smoothing factor for error 0.05
vc_beta Volatility EMA Factor 0.02
vC_v_target Target volatility For adaptive delta 0.08
vc_k Scaling Factor For delta adaptation 1.0
metric_ema_alpha EMA smoothing Factor for the metrics 0.1

3.1.3. Evaluation Metrics

The framework's performance was assessed using several metrics to evaluate its ability

to adapt to dynamic network traffic conditions and to effectively detect intrusions [43-

46]. These metrics are outlined in Table 3. [43-46].

Table 3. Evaluation Metrics and Their Role in Intrusion Detection

Metric Definition Purpose in IDS
Ratio of correct predicted samples Measure the overall
Accuracy to total samples classification performance to
TP+TN . . .
Accuracy= ———— achieve detection quality.
TP+TN+FP+FN
Fraction of the predicted attacks
. Evaluate the IDS's ability to
Precision among all the predicted as attacks
P avoid false alarms
Precision=
TP+EN
The fraction of actual attacks Measure sensitivity of the IDS
Recall
correctly classified by the IDS to actual threats.
Harmonic means of recall and Balances precision and recall
F1—score precision assessing the overall detection
Precison -Recall .
F1= 2 - effectiveness.
Precision+Recall
Evaluate the IDS's ability to
An Area under the Receiver perform the difference between
ROC—AUC

Operating Characteristic curve

normal and attack classes

across all the thresholds.
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Metric Definition Purpose in IDS
Showing counts of true positives, Provide insight into which
Confusion
true negatives, false positives, and attacks are correctly or
Matrix
false negatives of each class. incorrectly detected.
, Count of the detected drift and Monitors changes in traffic
Drift
near-drift events over the data conditions and assist the IDS
Frequency )
streams. adaptability to evolving attacks.

3.1.4. Baseline

To benchmark the performance of the Adaptive-Delta ADWIN framework, we compared
it against traditional drift detection methods, including fixed-6 ADWIN and Bagging
Ensemble [47]. These baselines use a fixed ADWIN delta parameter (8) and serve as a
reference to evaluate the effectiveness of the adaptive sensitivity control and the
system's ability to maintain classification performance under evolving network traffic

conditions [48, 49].
3.1.5. Implementation Environment
The framework was implemented utilizing relevant libraries and environments for

dashboard interaction data streaming [50-52].

Table 4. Implementation Environment for Adaptive-Delta ADWIN Evaluation

Component Details
Simulation language Python 3.11
Frameworks River (online ML & drift detection), scikit—learn For metrics,

Plotly (visualization)

Dataset Loader Pandas
Execution Platform Ubuntu 22.04 Intel i7 CPU, 16 GB RAM
Visualization Streamlit Dashboard with real-time plots

3.2. Performance Evaluation
This section presents an Adaptive—§ ADWIN results against fixed—3§ baselines. The
CICIDS2017 dataset was utilized for multi—class data streaming experiments, and relevant

metrics were used for evaluation.
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Figure 3 presents the results of adaptive and Fixed—4§ settings. The adaptive § (blue line)
regulates smoother transitions with fewer Fluctuations while accuracy ranges between
0.92—0.95. Fixed & (light blue line) regulates sharp oscillations by delaying drift detection
when § set to small—resulting in lower accuracy below 0.90. This confirms that adaptive

6 improves both mean accuracy and reduced IDS performance variability than static &.

Accuracy
. ADWIN &
0.998 ' Q.09
= (i} 0.06
©  0.996 o
=3 . o
O '
(8] .
b . 0.04
0.994 )
0.02
0.992
: 0
19K 19.5k 20k 20.5k
Sample

Figure 3. Accuracy vs & (Twin-Axis Plot)

3.2.2. Rolling False Positive (FP) and False Negative (FN) Rates

Figure 4 presents the rolling FP and FN rate results demonstrating adaptive § and
Fixed—8 detector performance results. The FP (blue line) achieves below 0.05 while
fixed—¢ configuration exceeds 0.15 significant spikes. On the other hand, FN (light blue
line) remains stable around 0.08 while fixed—4& rising above 0.12 as the results of a

delayed adaptation of the new attacks. Overall, adaptive § reduces FP and FN at the

acceptable rate without compromising detection performance accuracy.
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- FP Rate
0.15 | FN Rate

0.1
O
©
o
0.05
0 —
19k 19.5k 20k 20.5k
Sample

Figure 4. Rolling FP and FN

3.2.3. Drift Frequency

Figure 5 presents timely detection concept drift results between adaptive § and fixed—§
settings. Adaptive § (red line) generates fewer alarms aligning with the known drift points
(Tuesday's brute Force and Thursday's infiltration events). Conversely, Fixed—§
configuration generates excessive alerts when § is small, exceeding 100 alarms, and
generates Fewer 10 alarms when § is large. Overall, adaptive § maintains approximately
25—30 alarms, and sustain a balanced drift frequency that reflects the real traffic

network.

——e— Drift
Near-Drift

ample

Figure 5. Drift Frequency

3723 | Adaptive—Delta ADWIN: A Framework for Stable and Sensitive Intrusion Detection ..



Published By
Il» AsosiasiDoktor
i\“ Sistem Informasi Indonesia

3.2.4. Rolling ConfFusion Matrices

Figure 6 presents adaptive § for different traffic network patterns maintaining a high
detection accuracy per class. Adaptive—§ confusion matrices produce diagonals,
producing high classification accuracy, while fixed—8§ demonstrates off—diagonal as the
results of increased misclassifications. Adaptive § achieves the improved major attack
categories, with recall results reaching 0.90—DoS, and 0.85—PortScan. Fixed—4§ detectors
demonstrate a performance decline and drop to 0.70 with certain classes. These results
proofs that adaptive § sustains efficiency per—class detection, which is important fFor

resiliency in dynamic network environment.

1000
Actual WebAttack
Actual PortScan
2800
Actual Other
. 600
Actual Infiliration
\ctual Heartbleed ’
400
Actual DoS
200
\ctual BruteForce
Actual Benign 0
=)
"oy DQ‘O‘ pr“d p,@cr- p"’(y P Co ey,
Seny, Tityy 08 Teap, Py, Othe, ong e
¥n ("“0 .é/@ v G‘l/ . w Cs 4/‘
"ee So °n 2 o4

Figure 6. Rolling Confusion Matrices

3.2.5. Evaluation Metrics

Figure 7 presents the overall accuracy matrices of adaptive § and fixed—§ baseline.
Precision and recall achieve between 0.92—0.93, whereas Fl—score fixed—3§ Fluctuate
when overly sensitive. F1—score and ROC—ROC exceed 0.90. Conversely, Fixed—§
maintains unstable performance when F1 and ROC—ROC is below 0.85 and 0.90. Overall,
adaptive § adjustment improves balance between sensitivity and stability, avoiding

performance degradation observed in fixed—parameter systems.
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1 s o~ ~— Pracision
, ST = Recall
8 - —F1

ROC-AUC

Figure 7. Precision, Recall, F1, and ROC-AUC over Time

3.2.6. Statistical findings

The results illustrate that adaptive § improves the performance of the IDS with the
overall metrics by values between 3—5% compared to fixed—4§ baselines. This approach
confirms the achievement of higher detection accuracy that reduces FP/FN
approximately 50%, and 10% recall for balanced stability and sensitivity. Adaptive &
achieves accuracy between 0.93—0.95, and delivers a robust multi—class detection, for
critical attack. The results validate adaptive § as the effective and reliable solution for

real—time intrusion detection in dynamic environments.

Table 5. Summarized Performance Metrics

Fixed—48 Fixed—48 Adaptive—§ Relative
Metric
(Small) (Large) (Proposed) Improvement
Accuracy (mean = var) 0.902 + 0.015 0.891 + 0.012 0.938 + 0.007 +4.0%
Precision (mean + var) 0.883 + 0.020 0.872 + 0.018 0.931 + 0.009 +5.4%
Recall (mean + var) 0.865 + 0.025 0.878 £+ 0.021 0.919 £+ 0.010 +4.8%
F1-score (mean =+ var) 0.874 + 0.022 0.876 + 0.019 0.925 + 0.009 +51%
ROC-AUC (mean + var) 0.887 £+ 0.028 0.892 + 0.024 0.951 + 0.012 +6.6%
FP rate (mean) 0.128 0.115 0.064 -50%
FN rate (mean) 0122 0134 0.085 -30%
Controlled
Drift alarms () 12 8 27
frequency
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Table 5 presents the superiority of the Adaptive— § ADWIN performance framework. FPs

are decreased by 50% and FN by 30%, while ROC—AUC improves by 6.6% which shows
increased detection stability. Adaptive— § also generates well—timed drift alerts aligned

with actual concept shifts compared to fixed— § detectors.

3.3. Class-Level PerfFormance Analysis

To provide deeper insight into how the Adaptive— & ADWIN framework behaves across
individual attack categories, a class-level analysis was conducted for the Five major
traffic classes contained in CICIDS2017: Benign, DoS, PortScan, Web Attack, and
Infiltration. This analysis evaluates improvements in per-class recall, precision, false

alarms, and stability compared to fixed-8 configurations.

3.3.1. Benign TraFFic
Benign traffic typically dominates early parts of the CICIDS2017 stream (e.g, Monday
and Tuesday sessions). Findings:
1) Adaptive—d ADWIN maintains recall above 0.95, significantly reducing the
misclassification of normal traffic as attacks.
2) Fixed-6 detectors (especially with small §) suffer from False alarm spikes,
causing benign samples to be incorrectly flagged during mild distribution shifts.
3) The Adaptive—¢§ framework reduces FP in benign traffic by approximately 50%,

stabilizing alert rates and minimizing operator workload.

The ARC controller plays a crucial role in preventing unnecessary alarms when traffic

remains stable.

3.3.2. DosS Attacks
DoS attacks appear heavily on Wednesday in CICIDS2017, creating sharp concept drift.
Findings:
1) Adaptive—d ADWIN achieves recall = 0.90, outperforming Fixed detectors that
drop to 0.75-0.80 during the attack spike.
2) Sudden DoS bursts cause fixed—& ADWIN (small &) to over-trigger drift and
overfit, causing fluctuating predictions.
3) Large fixed—& detectors react too slowly, delaying detection and increasing

false negatives.
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The VC controller enables faster sensitivity to increase during high volatility periods,

supporting rapid adaptation when DoS floods appear.

3.3.3. PortScan Attacks
PortScan traffic shows periodic bursts with moderate drift intensity. Findings:
1) Adaptive—§ results maintain recall ~0.85 throughout the stream.
2) Fixed-6 ADWIN (large &) misses many short PortScan bursts, with recall often
dropping to 0.65-0.70.
3) Precision is also higher under adaptive control because drift alarms remain

aligned with real shifts instead of reacting pre-maturely.

PortScan patterns benefit from balanced sensitivity: the Adaptive—é§ scheduling prevents

both under-detection and alarm Flooding.

3.3.4. Web Attack TraFfic
Web Attack samples (SQL Injection, XSS, Brute Force) appear sparsely and cause micro-
drifts. Findings:
1) Adaptive-6 ADWIN improves recall For rare Web Attacks by approximately 10%
compared to fixed—4.
2) Fixed detectors often overlook low-frequency classes, especially when 6 is large,
leading to higher FN rates.
3) The smoothed error signal used in VC enables the framework to detect subtle

changes even when the attack volume is small.

Web Attacks demonstrate the advantage of dynamic § when handling minority classes

with intermittent drift signatures.

3.3.5. Infiltration Attacks
InFiltration attacks occur later in the dataset and represent slow but dangerous drifts.
Findings:
1) Adaptive-6 achieves the highest improvement on this class, increasing recall from
around 0.70 (fFixed) to ~0.82.
2) The Ffixed—8 ADWIN (small ) generates misleading false alarms early, which

destabilizes the model before the infiltration drift truly occurs.
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3) Adaptive-6 maintains consistent predictions and triggers drift exactly when

infiltration traffic introduces novel patterns.

This class confirms the significance of long-term drift regulation by ARC, which prevents

premature or unnecessary window resets.

Table 6. Summary of Class-Level Improvements

Class Fixed—4 Recall Adaptive—4§ Recall Improvement
Benign 0.88-0.92 0.95+ +3-7%
DoS 0.75-0.80 0.90 +10-15%
PortScan 0.65-0.70 0.85 +15-20%
Web Attack 0.70-0.75 0.80-0.85 +10%
InFiltration 0.70 0.82 +12%

The class-level evaluation confirms that Adaptive—& ADWIN consistently improves recall
and precision across all traffic categories. The largest gains are observed in PortScan,
DoS, and Infiltration, which are more strongly affected by concept drift. The Framework
remains stable during benign periods and responsive during sudden changes, validating
the effectiveness of the dual-controller design. These findings support the conclusion
that Adaptive—& ADWIN achieves a superior balance of sensitivity and stability compared

to Fixed—§ baselines.

3.4. Discussion

Adaptive—§ ADWIN shows an improved detection performance for the entire network
data streams. In dynamic network, fFixed— § detectors cause alarm flooding and Fail to
adapt when § is too small, while larger 6 delay the response to attacks. Adaptive—3§
adjusts the sensitivity based on error volatility and drift frequency, while managing the
adaptation to new threats with minimal false alarms. This confirms the efficient accuracy
and reduced FP spikes on the dataset, proving the framework's ability to achieve a

balanced performance in network environments.

Adaptive—5 ADWIN uses both VC and ARC controllers which depend on the

hyperparameter settings. VC(f) manages the fluctuations of the prediction error, where
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B which is smaller enhances the stability, while larger f improves the sensitivity.

Moreover, volatility targets error fluctuation tolerance, and ARC maintains the long-term
drift alarm Frequency. The optimal accuracy is achieved when £ is 0.3 for both balanced

volatility and a properly set p_target.

The challenge is balancing a rapid drift detection while avoiding the Ffalse alarm.
Adaptive—§ ADWIN mitigates by merging both VC and ARC for short— and long—term
responsive control. The results confirm that aggressive parameters compromise the
balance: VC that is sensitive, boosts the recall, however, increases FP. On the other hand,
restrictive ARC improves stability at the expense of delayed adaptation. Thus, choosing

the appropriate parameter is important for a reliable performance of the IDS.

The implementation was performed on the CICIDS2017, limiting the overall generalization
to network traffic conditions [55, 56]. This framework was compared to binary drift
detection baselines, limiting benchmarking [56]. Additionally, controllers and ensemble

can cause bottleneck in large—scale deployment [58, 59I.

4. CONCLUSION

The Adaptive-Delta ADWIN framework improves multiclass IDS accuracy to 0.93-0.95,
increases ROC-AUC by 6.6%, and reduces false positives and false negatives by 50% and
30%, respectively. These results demonstrate the framework’s capability to maintain
stability while adapting to dynamic network changes. The method is suitable For Security
Operations Centre (SOC) operation centres, cloud-based IDS, and loT network monitoring.
Future work will focus on testing the framework on additional and more diverse datasets,
including UNSW-NB15, CIC-IDS2018, CIC-DD0S2019, TON-loT, and NSL-KDD, to evaluate
cross-dataset generalization and robustness across different traffic patterns.
Furthermore, deployment in high-throughput enterprise environments, integration with
GPU-accelerated streaming pipelines, and expansion toward zero-day attack discovery

will be explored to enhance scalability and real-world applicability. [60-63].
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