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Abstract. Modern Software-Defined Networks (SDNs), while 

benefiting from centralized programmability, remain vulnerable to 

fast-evolving botnet attacks. This paper presents and evaluates a 

lightweight ONOS-based honeypot and decoy framework designed 

to detect and automatically block multi-vector botnet behaviors in 

real time. The system integrates honeypot-exposed Telnet, SMB, and 

DNS services with threshold-, entropy-, signature-, and correlation-

based inspection within a tree topology (depth = 2, fanout = 4) 

consisting of five OpenFlow switches and 50 hosts. Quantitatively, 

the system achieved 100% detection of all signature-based attacks 

(55/55), 100% blocking of distributed UDP scans (50/50), and 0% 

false positives on benign decoy access. Median detection latency 

ranged between 1–3 seconds. True positives (TP), false negatives 

(FN), false positives (FP), and true negatives (TN) were measured 

using ground-truth attacker lists built into automated test scripts, 

yielding precision and recall of 1.00 across all malicious scenarios. 

This work demonstrates that combining deception with SDN-level 

flow automation enables effective and computationally efficient 

botnet defense without machine learning. A key limitation is that all 

evaluations were conducted exclusively in a controlled Mininet 

simulation, which may not fully represent real-world traffic 

dynamics. Future work will validate the system on physical SDN 

deployments and evaluate its robustness under production 

workloads. 
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1. INTRODUCTION 

 

In this era of cloud computing, the Internet of Things (IoT), and increased connection 

of smart devices, most people rely on Internet [1], [2]. As a result, network designs have 

become more complex and vulnerable to advanced cyber-attacks such as those 

launched by botnets [3], [4], [5]. Botnets are large collections of synchronized malicious 

devices that carry out widespread assaults on targeted systems. Since 2003, botnets 

have been present in many forms and have gained widespread recognition as one of 

the most major and destructive threats [6]. The longevity of botnets may be attributed 

to their ability to adapt and evolve via constant updates to their infrastructure and 

algorithms. Hence, the duration for which a certain botnet detection system may 

maintain its effectiveness and usefulness is a crucial factor in its design [7]. 

Consequently, honeypot has been used as a method for examining the characteristics 

and actions of different types of assaults, including those launched by botnets. It 

employs deception to mislead attackers into believing they are interacting with a 

genuine system, with the goal of monitoring their actions and delaying their efforts to 

attack the system  [8]. 

 

Moreover, the introduction of Software-Defined Network (SDN) addressed the 

challenge of managing complex networks by separating them into distinct data and 

control planes [9]. The control plane is responsible for decision-making and centralized 

management of network activities. On the other hand, the data plane is where the 

actual forwarding of data packets occurs depending on the decisions made by the 

control plane. This enables more flexibility, programmability, and agility in network 

management [10], [11]. 

 

Prior research indicates that the botnet may be detected at both the recruiting and 

execution stages. However, the responsibility of preventing the network from botnet 

attacks  still lies with the network administrator [12]. Conversely, research conducted 

by the Information Systems Audit and Control Association (ISACA) highlights a 

significant scarcity of security experts who possess the necessary training and 

expertise, with a growing need for such individuals. Furthermore, the current 

cybersecurity workforce is insufficiently manned, posing challenges in promptly 

addressing attacks 24/7, throughout the year [13]. Machine Learning (ML) and statistics 
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are often used in these studies [14] [15], [16], [17], [18], [19], which require large training 

datasets and offline analysis. These approaches can be slow to adapt and may not operate 

in real time, imposing computational overhead and requiring human tuning. 

 

Hassan et al. [20] propose an entropy-based and machine-learning framework for DDoS 

detection in SDN, using traffic randomness and k-means clustering to classify network 

behavior across datasets such as CIC-IDS2017. Although effective, their approach relies on 

periodic entropy computation, feature extraction, and trained models, making it resource-

intensive and less suited for real-time response. Their findings highlight the ongoing need 

for adaptive, lightweight SDN defenses capable of addressing multi-vector attacks with 

faster, controller-level mitigation. 

 

Fan et al [21] suggested an SDN model for the network data controller of hybrid honeypots. 

The controller sends potentially interesting traffic to monitoring stations called 

"honeypots”. It utilizes OpenFlow switches, Snort, and Ryu SDN to filter traffic and 

implement a TCP connection handover mechanism. The design of the data controller has 

been greatly eased by SDN technologies, in particular, the capability to programmatically 

monitor and govern network data flows. But because of the limited virtual environments 

used for testing, several performance problems have been found. 

 

A method developed by Ichise et al [22] aims to identify botnet DNS traffic through the 

creation of a mechanism. Any DNS communication that is discovered to use an invalid name 

server is immediately flagged as malicious and blocked. However, DNS traffic is the only 

topic of investigation here. It was suggested by Achleitner et al [23] to utilize decoys and 

honeypots in SDN as part of a reconnaissance deception system to stall an attacker during 

the scanning phase. As the system produces unique virtual views for every single node in 

the network, it is not suited to identifying malicious behaviours that are disseminated over 

the network as a whole. 

 

Ja’fari et al [24] in their study offered an innovative way to block intelligent. In the 

intelligent blocking strategy, the loaders are distinguished from the bots once the 

connection between the members of the botnet is determined. This allows the loaders to 

be blocked. After that, only the loaders will have their ability to access other hosts 

restricted. Botnets that rely on loaders often do not have loaders that can communicate 
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with the botmaster. However, they used a centralized decoy manager, which is inefficient 

for handling high volumes of traffic and is vulnerable to becoming a central point of failure. 

 

Table 1. Summary of the previous studies, contribution and limitation 

Study Contribution Limitation 

Du & Wang 

[14] 

Provides systems protections from 

Distributed Denial of Services (DDoS) 

attacks 

Lack multi-vector detection 

combining signature, threshold, 

and correlation-based attacks 

Pillutla & 

Arjunan [19] 

A Fuzzy self-organizing maps-based 

DDOS mitigation (FSOMDM) 

technique that is ideally and suitably 

It does not handle scanning, 

botnet behavior, ICMP floods, 

signature-based attacks 

Hassan et 

al [20] 

An entropy and machine learning 

based approach for DDoS attacks 

detection in software defined 

networks 

Missing early-stage 

reconnaissance detection and 

provide no real-time mitigation 

Ichise et al 

[22] 

Detection and blocking of anomaly 

DNS Traffic by analyzing achieved NS 

record history 

Does not incorporate deception, 

multi-protocol inspection, 

signature matching, or 

coordinated attack analysis 

Achleitner 

et al [23] 

SDN-based Reconnaissance 

Deception System (RDS) that 

generates virtual network topologies 

to mislead insider scanners, delay 

host discovery, and identify scanning 

sources through SDN flow-statistics 

analysis. 

It does not perform real-time 

multi-vector botnet detection 

Ja’fari et al 

[24] 

An intelligent botnet blocking 

approach in software defined 

networks 

using honeypots 

Does not incorporate deception, 

multi-protocol inspection, 

signature matching, or 

coordinated attack analysis 

 

Existing SDN honeypot approaches lack multi-vector detection combining signature, 

threshold, and correlation-based methods. As a result, current solutions struggle to 
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keep pace with increasingly complex attacks while placing heavy pressure on 

administrators. This paper addresses that gap by proposing a proactive automation-

based botnet blocking system that unifies honeypots, SDN, and automated detection 

to strengthen network resilience. By minimizing manual intervention and reducing 

reliance on scarce cybersecurity expertise, the system streamlines threat detection, 

investigation, mitigation, and prevention, enabling faster and more effective responses 

to emerging attacks. 

 

2. METHODS 

 

2.1. Network Topology and Roles 

We constructed a tree topology (depth=2, fanout=4) that yields exactly five switches: one 

root and four child switches, connected in Mininet as in Figure 1. Four special hosts were 

attached to randomly chosen switches: a honeypot and three decoys. The honeypot (IP 

10.0.0.200/8) ran services on Telnet (TCP/23), SMB (TCP/445), and DNS (UDP/53). The decoys 

provided benign services: decoy1 (IP 10.0.0.201) ran an HTTP listener on TCP/8080; decoy2 

(IP 10.0.0.202) ran an SSH listener on TCP/2222; decoy3 (IP 10.0.0.203) ran an SNMP listener 

on UDP/161. All other hosts (h1–h50, IPs 10.0.0.1–10.0.0.50/8) were normal clients.  

 

 
Figure 1. Tree network topology (depth = 2, fanout = 4) 
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We deployed ONOS (version 2.7.0, Java 11) as the SDN controller [25]. In SDN, the control 

and data planes are decoupled, providing centralized programmability [26]. ONOS’ high 

performance and scale-out design enabled low-latency flow rule installation. The Mininet 

emulator instantiated this topology on an Ubuntu 22.04 workstation (Intel Core i7-4600M 

2.9GHz, 16 GB RAM); ONOS ran in Docker (Engine 29.1.2) and was accessed via its REST API 

(curl 7.68.0). We instrumented the controller to log CPU/memory usage: peak CPU 

remained below 12%, demonstrating modest overhead for our app. 

 

2.2. Detection Mechanisms 

Our HoneypotApp installs a packet processor to inspect IPv4 traffic. For each incoming 

packet, it extracts source/destination IP and port, and protocol (TCP, UDP, or ICMP). The 

detection logic proceeds in stages: 

 

1) Signature-based detection  

The proposed system employs a signature-based detection mechanism that identifies 

malicious activity by observing characteristic protocol–service combinations commonly 

associated with botnet behavior. In this context, a signature is defined as a tuple of 

observable traffic attributes, including transport protocol and destination service, that 

deviates from expected legitimate behavior within the network. The honeypot is 

intentionally configured to expose services such as Telnet, SMB, and DNS, which are 

frequently targeted during automated scanning, propagation, and command-and-control 

attempts. 

 

When a packet arrives at the controller, its header fields are examined to determine 

whether the traffic matches any of the defined signature conditions associated with the 

honeypot services. Since legitimate clients are not expected to initiate connections to 

these services in the experimental environment, a successful match serves as strong 

evidence of malicious intent. In response, the controller immediately installs a high-

priority drop rule on the ingress switch to block all subsequent traffic from the source 

host and terminates further processing of the flow. This signature-based stage allows 

the system to rapidly contain well-known attack patterns, providing deterministic and 

low-latency mitigation while reducing unnecessary overhead on subsequent detection 

components. 
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2) Statistic-Based Anomaly 

If no signature match, we update per-source TrafficStatistics: counts of packets, bytes, 

unique destination ports, and a running history of packet and byte rate samples. From 

these, we compute the packet rate, byte rate, unique-port count, and destination-port 

entropy for that source over its active period. We use Shannon entropy (H) of the set of 

destination ports to quantify randomness. The detection thresholds were chosen 

heuristically based on normal traffic profiles and literature: for ICMP (likely pure ping) 

we set 100 pps or 200 KB/s, above which is a flood. For TCP/UDP we use 50 pps or 

200 KB/s, or more than 5 unique ports or entropy <2.0 (low entropy suggests scanning). 

If any of these conditions are met, we flag the source as malicious and block it. By 

monitoring entropy as a single-value summary of port randomness, we capture scanning 

behavior without deep packet inspection [27]. 

 

3) Multi-source correlation  

For flows with a valid destination port, we also record SourceHit (srcIP, timestamp) per 

(dstIP:port) victim. We maintain a sliding window of the last 20 seconds. If ≥10 distinct 

source IPs target the same victim-port within 20s, we consider this a coordinated botnet 

assault. In that case, all those source IPs are immediately blocked. This simple heuristic 

catches distributed attacks (e.g., from multiple bots) that individually might not exceed 

thresholds, but collectively indicate a pattern. Ten attacker hosts each sent three packets 

to the decoy service on port 8080. The app’s multi-IP threshold is set to 10, so after ≥10 

different source IPs, all attacking hosts should be blocked. 

 

4) Pseudocode for detection logic 

In network security systems, detecting and mitigating malicious activity is crucial for 

maintaining system integrity. The detection process often involves multiple stages that 

analyze incoming packets, evaluate known attack signatures, assess traffic patterns, and 

cross-check behavioral anomalies. This detection logic begins with parsing network 

packets to extract key features such as the protocol type, source and destination IP 

addresses, and source and destination ports. Once the relevant features are extracted, 

the system checks if the source IP address is on a trusted whitelist. If it is, the packet is 

ignored. Otherwise, the system proceeds to evaluate the packet for potential threats 

using signature-based detection. If the packet matches any known malicious signature, 

the associated source IP is blocked, and no further processing occurs for that packet. 
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Next, the system updates traffic statistics, keeping track of data like packet length, 

protocol, and destination IP. This information feeds into a threshold-based behavioral 

detection mechanism. By computing packet rate, byte rate, the number of unique 

destination ports, and entropy for each source IP, the system can flag suspicious behavior 

based on pre-defined thresholds. For example, high packet or byte rates in conjunction 

with specific protocols can indicate potential flooding or denial-of-service attacks. The 

detection logic also includes a multi-IP correlation detection step. In this stage, the 

system monitors patterns where multiple source IPs target the same destination IP and 

port. If the number of source IPs exceeds a certain threshold within a defined time 

window, the source IPs are blocked, as this behavior may indicate a coordinated attack. 

The pseudocode for implementing this detection logic as follow. 

 
i. Packet Persing 
 Upon packet arrival: 

    Extract features: 
        proto = IPv4 protocol 
        srcIP = source IP 
        dstIP = destination IP 
        srcPort = source port 
        dstPort = destination port 

 
ii. Whitelist Check 

 if (whitelist.asJavaMap().containsKey(srcIP)) { 
            return; 
        } 
 

iii. Signature-Based Detection 
 For each signature in known malicious signatures: 
    If (proto, dstPort, srcIP) matches signature: 
        Block srcIP 
        Stop further processing of this packet 
 

iv. Update Traffic Statistics 
 trafficStats[srcIP].update(packet_length=len, protocol=proto, 

dstPort=dstPort, dstIP=dstIP) 
 

v. Threshold-Based Behavioral Detection 
 Compute for srcIP: 
    pkt_rate = trafficStats[srcIP].getPacketRate() 
    byte_rate = trafficStats[srcIP].getByteRate() 
    unique_ports = trafficStats[srcIP].getUniqueDstPortCount() 
    entropy = trafficStats[srcIP].getEntropy() 
 If proto == ICMP: 
    If pkt_rate > 100 or byte_rate > 200000 bytes/sec: 
        Block srcIP 
 Else (proto != ICMP): 
    If pkt_rate > 50 or byte_rate > 200000 bytes/sec or 

unique_ports > 5 or entropy < 2.0: 
        Block srcIP 
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vi. Multi-IP Correlation Detection 

 victim_key = dstIP + ":" + dstPort 
 current_time = now() 
 victim_map[victim_key].add((srcIP, current_time)) 
 Remove entries older than 20 seconds from 

victim_map[victim_key] 
 If size of victim_map[victim_key] >= 10: 
    For each srcIP in victim_map[victim_key]: 
        Block srcIP 
    Clear victim_map[victim_key] 

 

On detection, we use ONOS’s FlowRuleService to apply a temporary drop rule (priority 

50000) matching the malicious srcIP on the appropriate switch, with timeout 180s. This 

installs the rule in tens of milliseconds, effectively cutting off the attacker (flow setup 

performance benefits from ONOS’s design [25]). 

 

2.3. Experimental Setup 

We ran experiments in Mininet 2.3.0d6 on the above hardware. Honeypot and decoy 

services were simulated using netcat listeners on the specified ports. The ONOS app was 

written in Java (JDK 11) and activated on one controller (leader node in the cluster). Test 

traffic was generated by Python scripts and built-in tools: attackers used nc for TCP/UDP 

or ping for ICMP, following scenarios below. Between tests we cleared rules and state. 

We repeated each scenario 5 times to capture variability; overall we report aggregated 

results. 

 

2.4. Test Scenarios 

We conducted a comprehensive evaluation across six distinct scenarios, each designed 

to emulate typical botnet activities and reconnaissance behaviors commonly observed in 

network environments: 

 

1) Signature Attacks 

In this scenario, a single attacker (h1) initiates multiple connection attempts directed at 

the honeypot, targeting TCP ports 23 and 445 as well as UDP port 53, which correspond 

to Telnet, SMB, and DNS services, respectively, thereby simulating typical attack patterns 

associated with these protocols.  
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2) Decoy Access 

In this scenario, a legitimate host (h2) establishes connections to each of the decoy 

services running on ports 8080, 2222, and 161. These interactions represent normal, non-

malicious activity and are not expected to trigger any blocking mechanisms within the 

honeypot system.   

3) Port Scan 

The benign host (h2) attempts TCP connections to a sequence of 20 consecutive ports, 

ranging from 1000 to 1019, on the honeypot. This activity simulates typical legitimate 

scanning or service discovery behavior and should not trigger the system’s blocking 

mechanisms. 

4) Multi-IP Attack 

Ten attacker hosts each initiate three rapid connection attempts to the decoy service 

running on port 8080 (decoy1), collectively simulating a distributed scanning or 

coordinated attack campaign within a 20-second time window. 

5) ICMP Flood 

Fifty hosts each transmit ICMP echo request packets to the honeypot at a rate of 5 

packets per second over a 20-second interval, resulting in an aggregate ICMP traffic rate 

of approximately 250 packets per second. 

6) Botnet-like Traffic 

Fifty hosts each transmit 20 UDP packets targeting 20 distinct high-numbered ports in 

the 3000+ range on the honeypot, all within a few seconds, thereby simulating a rapid 

distributed scanning activity. After each scenario, we paused 10s and then queried ONOS 

via REST to retrieve all installed flow rules. A source IP is considered “blocked” if a flow 

matching its IP exists. Results were summarized per-test. 

 

3. RESULTS AND DISCUSSION 

 

3.1. Detection Performance 

All malicious scenarios were correctly detected and blocked, while all decoy/benign 

traffic passed without interruption. Table 2 summarizes the outcomes. In signature tests, 

all 3 Telnet and SMB attempts (per run) and all 5 DNS probes were blocked (100%). The 

decoy tests produced 0% false positives: connections to ports 8080, 2222, 161 were never 

blocked, as expected. The port-scan of 20 ports triggered an anomaly block (20 unique 
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ports > threshold), so the scanner was blocked on every run. In the multi-IP test, once 

the 10-source threshold was reached, all 10 attackers were blocked, demonstrating 

successful correlation-based mitigation. Notably, the ICMP flood (5 pps from 50 hosts) 

did not exceed our per-host ICMP threshold (100 pps), so no hosts were blocked; this is 

acceptable as the traffic rate was moderate. In the botnet-like UDP test, each of the 50 

hosts sent to >5 unique ports, triggering blocks on all 50. 

 

Table 2. Detection and blocking outcomes across test scenarios (averaged over 5 runs) 

Test Scenario Description 
Outcome 

(blocked/attempts) 
Detection Rate 

Telnet (TCP/23) 
3 connections to 

honeypot 
15/15 blocked (100%) 100% 

SMB (TCP/445) 
3 connections to 

honeypot 
15/15 blocked (100%) 100% 

DNS (UDP/53) 5 packets to honeypot 25/25 blocked (100%) 100% 

Decoy Access Benign 
0/15 blocked (0% false 

pos.) 
0% false positive 

Port Scan 
20-port scan on 

honeypot 
5/5 scanner blocked 100% 

Multi-IP Attack 10 attackers 10/10 hosts blocked 100% 

ICMP Flood 
50 hosts ping at 5 pps 

(20s) to honeypot 
0/50 hosts blocked 

Expected (below 

threshold) 

Botnet-Scan 

50 hosts ×20 ports to 

unique ports on 

honeypot 

50/50 hosts blocked 100% 

 

Across all trials, detection latency was low. Signature matches triggered blocking 

immediately on first packets. Threshold/correlation triggers occurred within seconds of 

attack onset. The ONOS controller’s flow installation time was measured in the 10–50 ms 

range, consistent with its high-performance design, so rule propagation was effectively 

instantaneous relative to network timescales. The median detection time from the first 

malicious packet to rule install was ~1–3 seconds in our tests. 

 



Vol. 8, No. 1, February 2026 

 
 

Nyamwaga M. Kaare, Anael E. Sam | 80 

Detection correctness was evaluated by comparing the set of attacking hosts initiated 

by the test harness against the set of source IPs blocked by the controller. Ground-truth 

attacker and benign host lists were known a priori for each experiment. After each test 

run, the ONOS REST API was queried to extract installed drop rules and identify blocked 

source addresses. True positives, false negatives, false positives, and true negatives were 

then computed per host and aggregated across all five runs of each scenario, as 

summarized in Table 3. For scenarios containing no malicious hosts, precision and recall 

are reported as not applicable (N/A). 

 

Table 3. Detection correctness across attack Scenarios 

Scenario TP FN FP TN Precision Recall 

Signature-based attack 55 0 0 245 1.00 1.00 

Distributed scan 50 0 0 200 1.00 1.00 

ICMP flood 0 0 0 250 N/A N/A 

Multi-IP Attack 10 0 0 200 1.00 1.00 

Decoy Traffic (benign) 0 0 0 250 N/A N/A 

Port Scan 5 0 0 245 1.00 1.00 

 

Resource utilization measurements indicate that botnet detection and mitigation incur 

modest control-plane overhead as shown in figure 2 and figure 3. During active attack 

scenarios, controller CPU remained between 10–12% under attack load, with memory 

usage below 1.2 GB, confirming modest overhead in our testbed. 

 

 
Figure 2. Average CPU usage   Figure 3. Average Memory Usage 

 

Compared to ML-based SDN detection systems, our rule-based approach avoids the 

overhead of training and feature extraction. As noted in the literature, ML detectors can 
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achieve high accuracy but require labeled data and can suffer from imbalanced or 

evolving attacks. In contrast, our entropy-and-threshold method is lightweight and 

parameter-based. It can be implemented with simple arithmetic (e.g. Shannon entropy 

calculation) and reacts immediately to observed traffic. The ONOS-based implementation 

adds negligible processing delay. We anticipate our method will have lower CPU/memory 

overhead than a full ML pipeline, at the cost of fixed (non-adaptive) thresholds. 

 

The results demonstrate that combining deception with lightweight SDN-based analytics 

provides robust real-time defense without machine learning. Signature detection offers 

deterministic identification, while entropy and threshold metrics capture both low-rate 

and distributed scanning. Correlation analysis identifies coordinated attacks invisible to 

per-host detection. False positives remained at zero across all benign scenarios, and 

ONOS's efficient flow-rule installation ensured rapid mitigation. The system’s low 

resource footprint further supports deployment in real-world SDN infrastructures. The 

primary limitation is the use of Mininet, which lacks realistic traffic diversity, jitter, and 

congestion patterns. As a result, threshold values may require adaptation before 

deployment in production environments. 

 

3.2. Discussion 

This study presented a proactive, automation-based botnet blocking system that 

integrates honeypots, Software-Defined Networking (SDN), and automated detection 

mechanisms to enhance network resilience against botnet attacks. Our approach 

effectively combines multiple detection methods—signature-based detection, statistical 

anomaly detection, and multi-source correlation—while minimizing the need for human 

intervention and reducing reliance on scarce cybersecurity expertise. 

 

The detection performance of the system was exemplary. All malicious attack scenarios 

were successfully detected and blocked, and benign traffic was allowed to pass without 

interruption. Notably, signature-based detection enabled rapid identification and blocking 

of common attack vectors such as Telnet, SMB, and DNS-based botnet behaviors. The 

system demonstrated high accuracy in detecting typical botnet activity, with a detection 

rate of 100% across all attack scenarios. Furthermore, the correlation-based multi-IP 

detection successfully handled distributed attacks, blocking all involved source IPs once 

the predefined threshold was met. 
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The experimental results also revealed that the system's real-time detection mechanism 

performed well under various attack conditions. In particular, the low detection latency 

observed in our experiments (1–3 seconds for rule installation) highlights the efficiency 

of the ONOS controller’s flow installation process. This speed is crucial for minimizing 

damage during an active attack. The absence of false positives during decoy tests and 

benign traffic scenarios indicates that the system can reliably distinguish between 

legitimate and malicious traffic. 

 

Resource utilization measurements further underscore the practicality of our approach. 

With modest CPU (10–12%) and memory usage (<1.2 GB), the system demonstrated a low 

overhead in terms of computational resources, making it suitable for deployment in real-

world SDN infrastructures. This is a significant advantage over machine learning (ML)-

based detection systems, which tend to incur higher computational costs due to training 

and feature extraction processes. Our system's lightweight, rule-based design avoids the 

need for large training datasets and can quickly adapt to evolving attack patterns without 

the computational overhead associated with traditional ML approaches. 

 

One of the main contributions of this study is the integration of deception and 

lightweight analytics, which provides real-time defense against botnet attacks. The 

combination of honeypots with SDN enables early-stage detection and containment of 

malicious traffic, especially through techniques like entropy-based anomaly detection 

and multi-source correlation. These methods allow us to identify both low-rate scanning 

behaviors and more sophisticated, coordinated botnet attacks that could otherwise 

evade traditional per-host detection mechanisms. The flexibility of SDN’s centralized 

control plane further ensures that malicious traffic can be blocked quickly and efficiently 

across the network. 

 

However, there are several limitations and areas for future improvement. Firstly, the 

Mininet-based experimental setup, while effective for initial testing, lacks realistic traffic 

patterns, jitter, and congestion found in actual network environments. This limitation 

means that the threshold values used for anomaly detection, such as packet rate and 

entropy, may need to be fine-tuned for deployment in production systems with more 

complex traffic dynamics. Additionally, while our approach successfully handles known 

attack types, it may not perform as well against entirely new or previously unseen botnet 
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behaviors that do not match the predefined signatures or statistical patterns. 

Incorporating more adaptive techniques or hybrid approaches that combine rule-based 

methods with machine learning could help address this limitation in future work. 

 

Another area for improvement lies in scalability. While the current design performed well 

with the limited number of nodes and traffic scenarios in our experiments, deploying the 

system at a larger scale, with many more switches and hosts, could introduce challenges 

related to scalability and performance. Ensuring that the system remains effective under 

high-volume traffic conditions and large-scale network topologies would require further 

testing and optimization, particularly in terms of controller performance and the 

scalability of the detection mechanisms. Moreover, the current system’s reliance on pre-

defined thresholds for traffic analysis limits its adaptability to dynamic network 

environments where traffic patterns may evolve rapidly. Future work could explore 

adaptive thresholding techniques or incorporate machine learning for dynamic anomaly 

detection to better handle emerging threats. 

 

4. CONCLUSION 

 

This work enhanced SDN security by developing a self-defending ONOS application that 

integrates honeypot-based deception with multi-layered detection mechanisms to 

identify botnet activity in real time. Experiments conducted in a controlled Mininet 

environment demonstrated that the system consistently detected and blocked known 

attack signatures, port scans, multi-source coordinated scans, and low-observable 

distributed behaviors, while generating no false alarms on legitimate decoy traffic. By 

leveraging the centralized SDN paradigm for rapid rule installation and employing 

lightweight entropy measurements and heuristic thresholds instead of machine-learning 

models, the proposed approach achieves fast, transparent mitigation with minimal 

controller overhead. 

 

Limitations and Future Work. Because all evaluations were performed in an emulated 

setting, the results may not fully capture the variability, congestion patterns, and 

background traffic diversity present in production networks. Consequently, the anomaly-

detection thresholds may require calibration or adaptive adjustment before large-scale 

deployment. Future work will focus on integrating adaptive thresholding mechanisms, 
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validating the system on physical SDN hardware to assess throughput and latency under 

realistic load, and evaluating performance in larger topologies. Additional research will 

expand the signature set and examine robustness against stealthy and slow-rate scan 

strategies, with the goal of further reducing the likelihood of false negatives. 
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