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1 INTRODUCTION

In this era of cloud computing, the Internet of Things (loT), and increased connection
of smart devices, most people rely on Internet [1], [2]. As a result, network designs have
become more complex and vulnerable to advanced cyber-attacks such as those
launched by botnets [3], [4], [5]. Botnets are large collections of synchronized malicious
devices that carry out widespread assaults on targeted systems. Since 2003, botnets
have been present in many forms and have gained widespread recognition as one of
the most major and destructive threats [6]. The longevity of botnets may be attributed
to their ability to adapt and evolve via constant updates to their infrastructure and
algorithms. Hence, the duration for which a certain botnet detection system may
maintain its effectiveness and usefulness is a crucial Factor in its design [7]
Consequently, honeypot has been used as a method for examining the characteristics
and actions of different types of assaults, including those launched by botnets. It
employs deception to mislead attackers into believing they are interacting with a
genuine system, with the goal of monitoring their actions and delaying their efforts to

attack the system [8]

Moreover, the introduction of Software-Defined Network (SDN) addressed the
challenge of managing complex networks by separating them into distinct data and
control planes [9]. The control plane is responsible for decision-making and centralized
management of network activities. On the other hand, the data plane is where the
actual forwarding of data packets occurs depending on the decisions made by the
control plane. This enables more flexibility, programmability, and agility in network

management [10], [11].

Prior research indicates that the botnet may be detected at both the recruiting and
execution stages. However, the responsibility of preventing the network from botnet
attacks still lies with the network administrator [12]. Conversely, research conducted
by the Information Systems Audit and Control Association (ISACA) highlights a
significant scarcity of security experts who possess the necessary training and
expertise, with a growing need for such individuals. Furthermore, the current
cybersecurity workforce is insufficiently manned, posing challenges in promptly

addressing attacks 24/7, throughout the year [13]. Machine Learning (ML) and statistics
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are often used in these studies [14] [15], [16], [17], (18], [19], which require large training

datasets and offline analysis. These approaches can be slow to adapt and may not operate

in real time, imposing computational overhead and requiring human tuning.

Hassan et al. [20] propose an entropy-based and machine-learning framework for DDoS
detection in SDN, using traffic randomness and k-means clustering to classify network
behavior across datasets such as CIC-IDS2017. Although effective, their approach relies on
periodic entropy computation, feature extraction, and trained models, making it resource-
intensive and less suited for real-time response. Their findings highlight the ongoing need
For adaptive, lightweight SDN defenses capable of addressing multi-vector attacks with

fFaster, controller-level mitigation.

Fan et al [21] suggested an SDN model for the network data controller of hybrid honeypots.
The controller sends potentially interesting traffic to monitoring stations called
"honeypots”. It utilizes OpenFlow switches, Snort, and Ryu SDN to filter traffic and
implement a TCP connection handover mechanism. The design of the data controller has
been greatly eased by SDN technologies, in particular, the capability to programmatically
monitor and govern network data flows. But because of the limited virtual environments

used for testing, several performance problems have been found.

A method developed by Ichise et al [22] aims to identify botnet DNS traffic through the
creation of a mechanism. Any DNS communication that is discovered to use an invalid name
server is immediately flagged as malicious and blocked. However, DNS traffic is the only
topic of investigation here. It was suggested by Achleitner et al [23] to utilize decoys and
honeypots in SDN as part of a reconnaissance deception system to stall an attacker during
the scanning phase. As the system produces unique virtual views for every single node in
the network, it is not suited to identifying malicious behaviours that are disseminated over

the network as a whole.

Ja'fari et al [24] in their study offered an innovative way to block intelligent. In the
intelligent blocking strategy, the loaders are distinguished from the bots once the
connection between the members of the botnet is determined. This allows the loaders to
be blocked. After that, only the loaders will have their ability to access other hosts

restricted. Botnets that rely on loaders often do not have loaders that can communicate
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with the botmaster. However, they used a centralized decoy manager, which is inefficient

for handling high volumes of traffic and is vulnerable to becoming a central point of Failure.

Table 1. Summary of the previous studies, contribution and limitation

Study Contribution Limitation
Provides systems protections from Lack multi-vector detection
Du & Wang
4] Distributed Denial of Services (DDoS) combining signature, threshold,
14
attacks and correlation-based attacks
A Fuzzy self-organizing maps-based It does not handle scanning,
Pillutla &

DDOS mitigation (FSOMDM)
Arjunan [19]
technique that is ideally and suitably

botnet behavior, ICMP floods,

signature-based attacks

An entropy and machine learning

Missing early-stage

Hassan et based approach for DDoS attacks
reconnaissance detection and
al [20] detection in software defined
provide no real-time mitigation
networks
Does not incorporate deception,
Detection and blocking of anomaly
Ichise et al multi-protocol inspection,
DNS Traffic by analyzing achieved NS
[22] signature matching, or
record history
coordinated attack analysis
SDN-based Reconnaissance
Deception System (RDS) that
generates virtual network topologies
Achleitner It does not perform real-time
to mislead insider scanners, delay
et al [23] multi-vector botnet detection
host discovery, and identify scanning
sources through SDN flow-statistics
analysis.
An intelligent botnet blocking Does not incorporate deception,
Ja'fari et al approach in software defined multi-protocol inspection,
[24] networks signature matching, or

using honeypots

coordinated attack analysis

Existing SDN honeypot approaches lack multi-vector detection combining signature,

threshold, and correlation-based methods. As a result, current solutions struggle to
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keep pace with increasingly complex attacks while placing heavy pressure on

administrators. This paper addresses that gap by proposing a proactive automation-
based botnet blocking system that unifies honeypots, SDN, and automated detection
to strengthen network resilience. By minimizing manual intervention and reducing
reliance on scarce cybersecurity expertise, the system streamlines threat detection,
investigation, mitigation, and prevention, enabling faster and more effective responses

to emerging attacks.

2. METHODS

2.1. Network Topology and Roles

We constructed a tree topology (depth=2, fFanout=4) that yields exactly five switches: one
root and Four child switches, connected in Mininet as in Figure 1. Four special hosts were
attached to randomly chosen switches: a honeypot and three decoys. The honeypot (IP
10.0.0.200/8) ran services on Telnet (TCP/23), SMB (TCP/445), and DNS (UDP/53). The decoys
provided benign services: decoy (IP 10.0.0.201) ran an HTTP listener on TCP/8080; decoy2
(IP 10.0.0.202) ran an SSH listener on TCP/2222; decoy3 (IP 10.0.0.203) ran an SNMP listener
on UDP/161. All other hosts (h1-h50, IPs 10.0.0.1-10.0.0.50/8) were normal clients.

Clustered
controllers

s2 s4 i s5
Eb ‘
= =8 =8 = =
u Host1  Host2 Decoy1  Host3 Decoy2 Host30  Decoy3 Host49 Host 50
oneypot 19001 10002  10.0.0201 10.0.0.3 10.0.0.202 10.0.0.30 10.0.0.203 10.0.0.49 10.0.0.50

10.0.0.200

Figure 1. Tree network topology (depth = 2, Fanout = 4)
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We deployed ONOS (version 2.7.0, Java 11) as the SDN controller [25]. In SDN, the control

and data planes are decoupled, providing centralized programmability [26]. ONOS' high
performance and scale-out design enabled low-latency flow rule installation. The Mininet
emulator instantiated this topology on an Ubuntu 22.04 workstation (Intel Core i7-4600M
2.9GHz, 16 GB RAM); ONOS ran in Docker (Engine 29.1.2) and was accessed via its REST API
(curl 7.68.0). We instrumented the controller to log CPU/memory usage: peak CPU

remained below 12%, demonstrating modest overhead for our app.

2.2, Detection Mechanisms
Our HoneypotApp installs a packet processor to inspect IPv4 traffic. For each incoming
packet, it extracts source/destination IP and port, and protocol (TCP, UDP, or ICMP). The

detection logic proceeds in stages:

1) Signature-based detection

The proposed system employs a signature-based detection mechanism that identifies
malicious activity by observing characteristic protocol-service combinations commonly
associated with botnet behavior. In this context, a signature is defined as a tuple of
observable traffic attributes, including transport protocol and destination service, that
deviates from expected legitimate behavior within the network. The honeypot is
intentionally configured to expose services such as Telnet, SMB, and DNS, which are
frequently targeted during automated scanning, propagation, and command-and-control

attempts.

When a packet arrives at the controller, its header fields are examined to determine
whether the traffic matches any of the defined signature conditions associated with the
honeypot services. Since legitimate clients are not expected to initiate connections to
these services in the experimental environment, a successful match serves as strong
evidence of malicious intent. In response, the controller immediately installs a high-
priority drop rule on the ingress switch to block all subsequent traffic from the source
host and terminates further processing of the flow. This signature-based stage allows
the system to rapidly contain well-known attack patterns, providing deterministic and
low-latency mitigation while reducing unnecessary overhead on subsequent detection

components.
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2)  Statistic-Based Anomaly

If no signature match, we update per-source TrafficStatistics: counts of packets, bytes,
unique destination ports, and a running history of packet and byte rate samples. From
these, we compute the packet rate, byte rate, unique-port count, and destination-port
entropy for that source over its active period. We use Shannon entropy (H) of the set of
destination ports to quantify randomness. The detection thresholds were chosen
heuristically based on normal traffic profiles and literature: fFor ICMP (likely pure ping)
we set 100 pps or 200 KB/s, above which is a Flood. For TCP/UDP we use 50 pps or
200 KB/s, or more than 5 unique ports or entropy <2.0 (low entropy suggests scanning).
IF any of these conditions are met, we flag the source as malicious and block it. By
monitoring entropy as a single-value summary of port randomness, we capture scanning

behavior without deep packet inspection [27].

3) Multi-source correlation

For Flows with a valid destination port, we also record SourceHit (srclP, timestamp) per
(dstIP:port) victim. We maintain a sliding window of the last 20 seconds. If =10 distinct
source IPs target the same victim-port within 20s, we consider this a coordinated botnet
assault. In that case, all those source IPs are immediately blocked. This simple heuristic
catches distributed attacks (e.g, from multiple bots) that individually might not exceed
thresholds, but collectively indicate a pattern. Ten attacker hosts each sent three packets
to the decoy service on port 8080. The app’s multi-IP threshold is set to 10, so after =10

different source IPs, all attacking hosts should be blocked.

4) Pseudocode For detection logic

In network security systems, detecting and mitigating malicious activity is crucial for
maintaining system integrity. The detection process often involves multiple stages that
analyze incoming packets, evaluate known attack signatures, assess traffic patterns, and
cross-check behavioral anomalies. This detection logic begins with parsing network
packets to extract key features such as the protocol type, source and destination IP
addresses, and source and destination ports. Once the relevant features are extracted,
the system checks if the source IP address is on a trusted whitelist. If it is, the packet is
ignored. Otherwise, the system proceeds to evaluate the packet for potential threats
using signature-based detection. If the packet matches any known malicious signature,

the associated source IP is blocked, and no further processing occurs for that packet.
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Next, the system updates traffic statistics, keeping track of data like packet length,

protocol, and destination IP. This information feeds into a threshold-based behavioral
detection mechanism. By computing packet rate, byte rate, the number of unique
destination ports, and entropy for each source IP, the system can flag suspicious behavior
based on pre-defined thresholds. For example, high packet or byte rates in conjunction
with specific protocols can indicate potential fFlooding or denial-of-service attacks. The
detection logic also includes a multi-IP correlation detection step. In this stage, the
system monitors patterns where multiple source IPs target the same destination IP and
port. If the number of source IPs exceeds a certain threshold within a defined time
window, the source IPs are blocked, as this behavior may indicate a coordinated attack.

The pseudocode for implementing this detection logic as follow.

i. Packet Persing
Upon packet arrival:
Extract features:

proto = IPv4 protocol
srcIP = source IP
dstIP = destination IP
srcPort = source port
dstPort = destination port

ii. Whitelist Check
if (whitelist.asJavaMap () .containsKey (srcIP)) {
return;

}

iii. Signature-Based Detection
For each signature in known malicious signatures:
If (proto, dstPort, srcIP) matches signature:
Block srcIP
Stop further processing of this packet

iv. Update Traffic Statistics
trafficStats[srcIP].update (packet length=len, protocol=proto,
dstPort=dstPort, dstIP=dstIP)

v. Threshold-Based Behavioral Detection
Compute for srcIP:
pkt rate = trafficStats[srcIP].getPacketRate()
byte rate = trafficStats[srcIP].getByteRate ()
unique ports = trafficStats[srcIP].getUniqueDstPortCount ()
entropy = trafficStats[srcIP].getEntropy ()
If proto == ICMP:
If pkt rate > 100 or byte rate > 200000 bytes/sec:
Block srcIP
Else (proto != ICMP):
If pkt rate > 50 or byte rate > 200000 bytes/sec or
unique ports > 5 or entropy < 2.0:
Block srcIP
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vi. Multi-IP Correlation Detection
victim key = dstIP + ":" + dstPort
current time = now ()

victim map[victim key].add((srcIP, current time))
Remove entries older than 20 seconds from
victim map[victim key]
If size of victim map[victim key] >= 10:
For each srcIP in victim map([victim key]:
Block srcIP
Clear victim map([victim key]

On detection, we use ONOS's FlowRuleService to apply a temporary drop rule (priority
50000) matching the malicious srclP on the appropriate switch, with timeout 180s. This
installs the rule in tens of milliseconds, effectively cutting off the attacker (Flow setup

performance benefits from ONOS's design [25]).

2.3. Experimental Setup

We ran experiments in Mininet 2.3.0d6 on the above hardware. Honeypot and decoy
services were simulated using netcat listeners on the specified ports. The ONOS app was
written in Java (JDK 11) and activated on one controller (leader node in the cluster). Test
traffic was generated by Python scripts and built-in tools: attackers used nc for TCP/UDP
or ping for ICMP, following scenarios below. Between tests we cleared rules and state.
We repeated each scenario 5 times to capture variability; overall we report aggregated

results.

2.4, Test Scenarios
We conducted a comprehensive evaluation across six distinct scenarios, each designed
to emulate typical botnet activities and reconnaissance behaviors commonly observed in

network environments:

1) Signature Attacks

In this scenario, a single attacker (h1) initiates multiple connection attempts directed at
the honeypot, targeting TCP ports 23 and 445 as well as UDP port 53, which correspond
to Telnet, SMB, and DNS services, respectively, thereby simulating typical attack patterns

associated with these protocols.
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2)  Decoy Access

In this scenario, a legitimate host (h2) establishes connections to each of the decoy
services running on ports 8080, 2222, and 161. These interactions represent normal, non-
malicious activity and are not expected to trigger any blocking mechanisms within the
honeypot system.

3)  Port Scan

The benign host (h2) attempts TCP connections to a sequence of 20 consecutive ports,
ranging from 1000 to 1019, on the honeypot. This activity simulates typical legitimate
scanning or service discovery behavior and should not trigger the system's blocking
mechanisms.

4)  Multi-IP Attack

Ten attacker hosts each initiate three rapid connection attempts to the decoy service
running on port 8080 (decoyl), collectively simulating a distributed scanning or
coordinated attack campaign within a 20-second time window.

5) ICMP Flood

Fifty hosts each transmit ICMP echo request packets to the honeypot at a rate of 5
packets per second over a 20-second interval, resulting in an aggregate ICMP traffic rate
of approximately 250 packets per second.

6) Botnet-like Traffic

Fifty hosts each transmit 20 UDP packets targeting 20 distinct high-numbered ports in
the 3000+ range on the honeypot, all within a fFew seconds, thereby simulating a rapid
distributed scanning activity. After each scenario, we paused 10s and then queried ONOS
via REST to retrieve all installed fFlow rules. A source IP is considered “blocked” if a Flow

matching its IP exists. Results were summarized per-test.

3. RESULTS AND DISCUSSION

3.1. Detection Performance

All malicious scenarios were correctly detected and blocked, while all decoy/benign
traffic passed without interruption. Table 2 summarizes the outcomes. In signature tests,
all 3 Telnet and SMB attempts (per run) and all 5 DNS probes were blocked (100%). The
decoy tests produced 0% False positives: connections to ports 8080, 2222, 161 were never

blocked, as expected. The port-scan of 20 ports triggered an anomaly block (20 unique
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ports > threshold), so the scanner was blocked on every run. In the multi-IP test, once

the 10-source threshold was reached, all 10 attackers were blocked, demonstrating
successful correlation-based mitigation. Notably, the ICMP flood (5 pps from 50 hosts)
did not exceed our per-host ICMP threshold (100 pps), so no hosts were blocked; this is
acceptable as the traffic rate was moderate. In the botnet-like UDP test, each of the 50

hosts sent to >5 unique ports, triggering blocks on all 50.

Table 2. Detection and blocking outcomes across test scenarios (averaged over 5 runs)

) o Outcome )
Test Scenario Description Detection Rate
(blocked/attempts)

3 connections to

Telnet (TCP/23) 15/15 blocked (100%) 100%
honeypot
3 connections to
SMB (TCP/445) 15/15 blocked (100%) 100%
honeypot
DNS (UDP/53) 5 packets to honeypot  25/25 blocked (100%) 100%
0/15 blocked (0% False
Decoy Access Benign 0% False positive
pos.)
20-port scan on
Port Scan 5/5 scanner blocked 100%
honeypot
Multi-1P Attack 10 attackers 10/10 hosts blocked 100%
50 hosts ping at 5 pps Expected (below
ICMP Flood 0/50 hosts blocked
(20s) to honeypot threshold)

50 hosts x20 ports to
Botnet-Scan unique ports on 50/50 hosts blocked 100%
honeypot

Across all trials, detection latency was low. Signature matches triggered blocking
immediately on First packets. Threshold/correlation triggers occurred within seconds of
attack onset. The ONOS controller's fFlow installation time was measured in the 10-50 ms
range, consistent with its high-performance design, so rule propagation was effectively
instantaneous relative to network timescales. The median detection time from the First

malicious packet to rule install was ~1-3 seconds in our tests.
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Detection correctness was evaluated by comparing the set of attacking hosts initiated

by the test harness against the set of source IPs blocked by the controller. Ground-truth
attacker and benign host lists were known a priori for each experiment. After each test
run, the ONOS REST API was queried to extract installed drop rules and identify blocked
source addresses. True positives, false negatives, false positives, and true negatives were
then computed per host and aggregated across all five runs of each scenario, as
summarized in Table 3. For scenarios containing no malicious hosts, precision and recall

are reported as not applicable (N/A).

Table 3. Detection correctness across attack Scenarios

Scenario TP FN FP TN Precision Recall
Signature-based attack 55 0 0 245 1.00 1.00
Distributed scan 50 0 0 200 1.00 1.00
ICMP Flood 0 0 0 250 N/A N/A
Multi-1P Attack 10 0 0 200 1.00 1.00
Decoy Traffic (benign) 0 0 0 250 N/A N/A
Port Scan 5 0 0 245 1.00 1.00

Resource utilization measurements indicate that botnet detection and mitigation incur
modest control-plane overhead as shown in figure 2 and figure 3. During active attack
scenarios, controller CPU remained between 10-12% under attack load, with memory

usage below 1.2 GB, confirming modest overhead in our testbed.

CPU Usage Memory Usage

B N 2 l
o - H = B

Controller 1 Controller 2 Controller 3 At Nod U d CPU
ontrofier ontrofier ontrofier ompNodes nuse Controller 1 Controller2  Controller3  Atomix Nodes Unused Memory

Figure 2. Average CPU usage Figure 3. Average Memory Usage

Compared to ML-based SDN detection systems, our rule-based approach avoids the

overhead of training and feature extraction. As noted in the literature, ML detectors can
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achieve high accuracy but require labeled data and can suffer from imbalanced or

evolving attacks. In contrast, our entropy-and-threshold method is lightweight and
parameter-based. It can be implemented with simple arithmetic (e.g. Shannon entropy
calculation) and reacts immediately to observed traffic. The ONOS-based implementation
adds negligible processing delay. We anticipate our method will have lower CPU/memory

overhead than a full ML pipeline, at the cost of fixed (non-adaptive) thresholds.

The results demonstrate that combining deception with lightweight SDN-based analytics
provides robust real-time defense without machine learning. Signature detection offers
deterministic identification, while entropy and threshold metrics capture both low-rate
and distributed scanning. Correlation analysis identifies coordinated attacks invisible to
per-host detection. False positives remained at zero across all benign scenarios, and
ONOS's efficient Flow-rule installation ensured rapid mitigation. The system’s low
resource footprint Further supports deployment in real-world SDN infrastructures. The
primary limitation is the use of Mininet, which lacks realistic traffic diversity, jitter, and
congestion patterns. As a result, threshold values may require adaptation before

deployment in production environments.

3.2. Discussion

This study presented a proactive, automation-based botnet blocking system that
integrates honeypots, Software-Defined Networking (SDN), and automated detection
mechanisms to enhance network resilience against botnet attacks. Our approach
effectively combines multiple detection methods—signature-based detection, statistical
anomaly detection, and multi-source correlation—while minimizing the need For human

intervention and reducing reliance on scarce cybersecurity expertise.

The detection performance of the system was exemplary. All malicious attack scenarios
were successfully detected and blocked, and benign traffic was allowed to pass without
interruption. Notably, signature-based detection enabled rapid identification and blocking
of common attack vectors such as Telnet, SMB, and DNS-based botnet behaviors. The
system demonstrated high accuracy in detecting typical botnet activity, with a detection
rate of 100% across all attack scenarios. Furthermore, the correlation-based multi-IP
detection successfully handled distributed attacks, blocking all involved source IPs once

the predefined threshold was met.
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The experimental results also revealed that the system's real-time detection mechanism

performed well under various attack conditions. In particular, the low detection latency
observed in our experiments (1-3 seconds for rule installation) highlights the efficiency
of the ONOS controller’s flow installation process. This speed is crucial For minimizing
damage during an active attack. The absence of false positives during decoy tests and
benign traffic scenarios indicates that the system can reliably distinguish between

legitimate and malicious trafFfic.

Resource utilization measurements further underscore the practicality of our approach.
With modest CPU (10-12%) and memory usage (<1.2 GB), the system demonstrated a low
overhead in terms of computational resources, making it suitable for deployment in real-
world SDN infrastructures. This is a significant advantage over machine learning (ML)-
based detection systems, which tend to incur higher computational costs due to training
and feature extraction processes. Our system's lightweight, rule-based design avoids the
need for large training datasets and can quickly adapt to evolving attack patterns without

the computational overhead associated with traditional ML approaches.

One of the main contributions of this study is the integration of deception and
lightweight analytics, which provides real-time defense against botnet attacks. The
combination of honeypots with SDN enables early-stage detection and containment of
malicious traffic, especially through techniques like entropy-based anomaly detection
and multi-source correlation. These methods allow us to identify both low-rate scanning
behaviors and more sophisticated, coordinated botnet attacks that could otherwise
evade traditional per-host detection mechanisms. The flexibility of SDN's centralized
control plane further ensures that malicious traffic can be blocked quickly and efficiently

across the network.

However, there are several limitations and areas for future improvement. Firstly, the
Mininet-based experimental setup, while effective for initial testing, lacks realistic traffic
patterns, jitter, and congestion Found in actual network environments. This limitation
means that the threshold values used for anomaly detection, such as packet rate and
entropy, may need to be fine-tuned for deployment in production systems with more
complex traffic dynamics. Additionally, while our approach successfully handles known

attack types, it may not perform as well against entirely new or previously unseen botnet
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behaviors that do not match the predefined signatures or statistical patterns.

Incorporating more adaptive techniques or hybrid approaches that combine rule-based

methods with machine learning could help address this limitation in Future work.

Another area for improvement lies in scalability. While the current design performed well
with the limited number of nodes and traffic scenarios in our experiments, deploying the
system at a larger scale, with many more switches and hosts, could introduce challenges
related to scalability and performance. Ensuring that the system remains effective under
high-volume traffic conditions and large-scale network topologies would require further
testing and optimization, particularly in terms of controller performance and the
scalability of the detection mechanisms. Moreover, the current system’s reliance on pre-
defined thresholds For traffic analysis limits its adaptability to dynamic network
environments where traffic patterns may evolve rapidly. Future work could explore
adaptive thresholding techniques or incorporate machine learning for dynamic anomaly

detection to better handle emerging threats.

4. CONCLUSION

This work enhanced SDN security by developing a self-defending ONOS application that
integrates honeypot-based deception with multi-layered detection mechanisms to
identify botnet activity in real time. Experiments conducted in a controlled Mininet
environment demonstrated that the system consistently detected and blocked known
attack signatures, port scans, multi-source coordinated scans, and low-observable
distributed behaviors, while generating no false alarms on legitimate decoy traffic. By
leveraging the centralized SDN paradigm for rapid rule installation and employing
lightweight entropy measurements and heuristic thresholds instead of machine-learning
models, the proposed approach achieves fast, transparent mitigation with minimal

controller overhead.

Limitations and Future Work. Because all evaluations were performed in an emulated
setting, the results may not fully capture the variability, congestion patterns, and
background traffic diversity present in production networks. Consequently, the anomaly-
detection thresholds may require calibration or adaptive adjustment before large-scale

deployment. Future work will Focus on integrating adaptive thresholding mechanisms,
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validating the system on physical SDN hardware to assess throughput and latency under

realistic load, and evaluating performance in larger topologies. Additional research will

expand the signature set and examine robustness against stealthy and slow-rate scan

strategies, with the goal of Further reducing the likelihood of false negatives.
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