
Vol. 8, No. 1, February 2026

69

Journal of Information Systems and Informatics | ISSN: 2656-5935 | e-ISSN: 2656-4882 | pp. 69-86

Published by Asosiasi Doktor Sistem Informasi Indonesia

Towards Self-Defending SDN Infrastructures: Real-Time Honeypot-

Enabled Botnet Detection Using ONOS

Nyamwaga M. Kaare1, Anael E. Sam2

1,2The Nelson Mandela African Institution of Science and Technology, Tanzania

Received:

November 4, 2025

Revised:

December 3, 2025

Accepted:

January 6, 2026

Published:

February 12, 2026

Corresponding Author:

Author Name*:

Nyamwaga M. Kaare

Email*:

kaaren@nm-aist.ac.tz

DOI:

10.63158/journalisi.v8i1.1375

© 2026 Journal of

Information Systems and

Informatics. This open

access article is distributed

under a (CC-BY License)

Abstract. Modern Software-Defined Networks (SDNs), while

benefiting from centralized programmability, remain vulnerable to

fast-evolving botnet attacks. This paper presents and evaluates a

lightweight ONOS-based honeypot and decoy framework designed

to detect and automatically block multi-vector botnet behaviors in

real time. The system integrates honeypot-exposed Telnet, SMB, and

DNS services with threshold-, entropy-, signature-, and correlation-

based inspection within a tree topology (depth = 2, fanout = 4)

consisting of five OpenFlow switches and 50 hosts. Quantitatively,

the system achieved 100% detection of all signature-based attacks

(55/55), 100% blocking of distributed UDP scans (50/50), and 0%

false positives on benign decoy access. Median detection latency

ranged between 1–3 seconds. True positives (TP), false negatives

(FN), false positives (FP), and true negatives (TN) were measured

using ground-truth attacker lists built into automated test scripts,

yielding precision and recall of 1.00 across all malicious scenarios.

This work demonstrates that combining deception with SDN-level

flow automation enables effective and computationally efficient

botnet defense without machine learning. A key limitation is that all

evaluations were conducted exclusively in a controlled Mininet

simulation, which may not fully represent real-world traffic

dynamics. Future work will validate the system on physical SDN

deployments and evaluate its robustness under production

workloads.

Keywords: Botnet Detection, Flow Automation, Honeypot, Network

Security, ONOS, Software-Defined Networking

https://doi.org/10.63158/journalisi.v8i1.1375

Vol. 8, No. 1, February 2026

Nyamwaga M. Kaare, Anael E. Sam | 70

1. INTRODUCTION

In this era of cloud computing, the Internet of Things (IoT), and increased connection

of smart devices, most people rely on Internet [1], [2]. As a result, network designs have

become more complex and vulnerable to advanced cyber-attacks such as those

launched by botnets [3], [4], [5]. Botnets are large collections of synchronized malicious

devices that carry out widespread assaults on targeted systems. Since 2003, botnets

have been present in many forms and have gained widespread recognition as one of

the most major and destructive threats [6]. The longevity of botnets may be attributed

to their ability to adapt and evolve via constant updates to their infrastructure and

algorithms. Hence, the duration for which a certain botnet detection system may

maintain its effectiveness and usefulness is a crucial factor in its design [7].

Consequently, honeypot has been used as a method for examining the characteristics

and actions of different types of assaults, including those launched by botnets. It

employs deception to mislead attackers into believing they are interacting with a

genuine system, with the goal of monitoring their actions and delaying their efforts to

attack the system [8].

Moreover, the introduction of Software-Defined Network (SDN) addressed the

challenge of managing complex networks by separating them into distinct data and

control planes [9]. The control plane is responsible for decision-making and centralized

management of network activities. On the other hand, the data plane is where the

actual forwarding of data packets occurs depending on the decisions made by the

control plane. This enables more flexibility, programmability, and agility in network

management [10], [11].

Prior research indicates that the botnet may be detected at both the recruiting and

execution stages. However, the responsibility of preventing the network from botnet

attacks still lies with the network administrator [12]. Conversely, research conducted

by the Information Systems Audit and Control Association (ISACA) highlights a

significant scarcity of security experts who possess the necessary training and

expertise, with a growing need for such individuals. Furthermore, the current

cybersecurity workforce is insufficiently manned, posing challenges in promptly

addressing attacks 24/7, throughout the year [13]. Machine Learning (ML) and statistics

Vol. 8, No. 1, February 2026

71 | Towards Self-Defending SDN Infrastructure: Real-Time Honeypot-Enabled ….

are often used in these studies [14] [15], [16], [17], [18], [19], which require large training

datasets and offline analysis. These approaches can be slow to adapt and may not operate

in real time, imposing computational overhead and requiring human tuning.

Hassan et al. [20] propose an entropy-based and machine-learning framework for DDoS

detection in SDN, using traffic randomness and k-means clustering to classify network

behavior across datasets such as CIC-IDS2017. Although effective, their approach relies on

periodic entropy computation, feature extraction, and trained models, making it resource-

intensive and less suited for real-time response. Their findings highlight the ongoing need

for adaptive, lightweight SDN defenses capable of addressing multi-vector attacks with

faster, controller-level mitigation.

Fan et al [21] suggested an SDN model for the network data controller of hybrid honeypots.

The controller sends potentially interesting traffic to monitoring stations called

"honeypots”. It utilizes OpenFlow switches, Snort, and Ryu SDN to filter traffic and

implement a TCP connection handover mechanism. The design of the data controller has

been greatly eased by SDN technologies, in particular, the capability to programmatically

monitor and govern network data flows. But because of the limited virtual environments

used for testing, several performance problems have been found.

A method developed by Ichise et al [22] aims to identify botnet DNS traffic through the

creation of a mechanism. Any DNS communication that is discovered to use an invalid name

server is immediately flagged as malicious and blocked. However, DNS traffic is the only

topic of investigation here. It was suggested by Achleitner et al [23] to utilize decoys and

honeypots in SDN as part of a reconnaissance deception system to stall an attacker during

the scanning phase. As the system produces unique virtual views for every single node in

the network, it is not suited to identifying malicious behaviours that are disseminated over

the network as a whole.

Ja’fari et al [24] in their study offered an innovative way to block intelligent. In the

intelligent blocking strategy, the loaders are distinguished from the bots once the

connection between the members of the botnet is determined. This allows the loaders to

be blocked. After that, only the loaders will have their ability to access other hosts

restricted. Botnets that rely on loaders often do not have loaders that can communicate

Vol. 8, No. 1, February 2026

Nyamwaga M. Kaare, Anael E. Sam | 72

with the botmaster. However, they used a centralized decoy manager, which is inefficient

for handling high volumes of traffic and is vulnerable to becoming a central point of failure.

Table 1. Summary of the previous studies, contribution and limitation

Study Contribution Limitation

Du & Wang

[14]

Provides systems protections from

Distributed Denial of Services (DDoS)

attacks

Lack multi-vector detection

combining signature, threshold,

and correlation-based attacks

Pillutla &

Arjunan [19]

A Fuzzy self-organizing maps-based

DDOS mitigation (FSOMDM)

technique that is ideally and suitably

It does not handle scanning,

botnet behavior, ICMP floods,

signature-based attacks

Hassan et

al [20]

An entropy and machine learning

based approach for DDoS attacks

detection in software defined

networks

Missing early-stage

reconnaissance detection and

provide no real-time mitigation

Ichise et al

[22]

Detection and blocking of anomaly

DNS Traffic by analyzing achieved NS

record history

Does not incorporate deception,

multi-protocol inspection,

signature matching, or

coordinated attack analysis

Achleitner

et al [23]

SDN-based Reconnaissance

Deception System (RDS) that

generates virtual network topologies

to mislead insider scanners, delay

host discovery, and identify scanning

sources through SDN flow-statistics

analysis.

It does not perform real-time

multi-vector botnet detection

Ja’fari et al

[24]

An intelligent botnet blocking

approach in software defined

networks

using honeypots

Does not incorporate deception,

multi-protocol inspection,

signature matching, or

coordinated attack analysis

Existing SDN honeypot approaches lack multi-vector detection combining signature,

threshold, and correlation-based methods. As a result, current solutions struggle to

Vol. 8, No. 1, February 2026

73 | Towards Self-Defending SDN Infrastructure: Real-Time Honeypot-Enabled ….

keep pace with increasingly complex attacks while placing heavy pressure on

administrators. This paper addresses that gap by proposing a proactive automation-

based botnet blocking system that unifies honeypots, SDN, and automated detection

to strengthen network resilience. By minimizing manual intervention and reducing

reliance on scarce cybersecurity expertise, the system streamlines threat detection,

investigation, mitigation, and prevention, enabling faster and more effective responses

to emerging attacks.

2. METHODS

2.1. Network Topology and Roles

We constructed a tree topology (depth=2, fanout=4) that yields exactly five switches: one

root and four child switches, connected in Mininet as in Figure 1. Four special hosts were

attached to randomly chosen switches: a honeypot and three decoys. The honeypot (IP

10.0.0.200/8) ran services on Telnet (TCP/23), SMB (TCP/445), and DNS (UDP/53). The decoys

provided benign services: decoy1 (IP 10.0.0.201) ran an HTTP listener on TCP/8080; decoy2

(IP 10.0.0.202) ran an SSH listener on TCP/2222; decoy3 (IP 10.0.0.203) ran an SNMP listener

on UDP/161. All other hosts (h1–h50, IPs 10.0.0.1–10.0.0.50/8) were normal clients.

Figure 1. Tree network topology (depth = 2, fanout = 4)

Vol. 8, No. 1, February 2026

Nyamwaga M. Kaare, Anael E. Sam | 74

We deployed ONOS (version 2.7.0, Java 11) as the SDN controller [25]. In SDN, the control

and data planes are decoupled, providing centralized programmability [26]. ONOS’ high

performance and scale-out design enabled low-latency flow rule installation. The Mininet

emulator instantiated this topology on an Ubuntu 22.04 workstation (Intel Core i7-4600M

2.9GHz, 16 GB RAM); ONOS ran in Docker (Engine 29.1.2) and was accessed via its REST API

(curl 7.68.0). We instrumented the controller to log CPU/memory usage: peak CPU

remained below 12%, demonstrating modest overhead for our app.

2.2. Detection Mechanisms

Our HoneypotApp installs a packet processor to inspect IPv4 traffic. For each incoming

packet, it extracts source/destination IP and port, and protocol (TCP, UDP, or ICMP). The

detection logic proceeds in stages:

1) Signature-based detection

The proposed system employs a signature-based detection mechanism that identifies

malicious activity by observing characteristic protocol–service combinations commonly

associated with botnet behavior. In this context, a signature is defined as a tuple of

observable traffic attributes, including transport protocol and destination service, that

deviates from expected legitimate behavior within the network. The honeypot is

intentionally configured to expose services such as Telnet, SMB, and DNS, which are

frequently targeted during automated scanning, propagation, and command-and-control

attempts.

When a packet arrives at the controller, its header fields are examined to determine

whether the traffic matches any of the defined signature conditions associated with the

honeypot services. Since legitimate clients are not expected to initiate connections to

these services in the experimental environment, a successful match serves as strong

evidence of malicious intent. In response, the controller immediately installs a high-

priority drop rule on the ingress switch to block all subsequent traffic from the source

host and terminates further processing of the flow. This signature-based stage allows

the system to rapidly contain well-known attack patterns, providing deterministic and

low-latency mitigation while reducing unnecessary overhead on subsequent detection

components.

Vol. 8, No. 1, February 2026

75 | Towards Self-Defending SDN Infrastructure: Real-Time Honeypot-Enabled ….

2) Statistic-Based Anomaly

If no signature match, we update per-source TrafficStatistics: counts of packets, bytes,

unique destination ports, and a running history of packet and byte rate samples. From

these, we compute the packet rate, byte rate, unique-port count, and destination-port

entropy for that source over its active period. We use Shannon entropy (H) of the set of

destination ports to quantify randomness. The detection thresholds were chosen

heuristically based on normal traffic profiles and literature: for ICMP (likely pure ping)

we set 100 pps or 200 KB/s, above which is a flood. For TCP/UDP we use 50 pps or

200 KB/s, or more than 5 unique ports or entropy <2.0 (low entropy suggests scanning).

If any of these conditions are met, we flag the source as malicious and block it. By

monitoring entropy as a single-value summary of port randomness, we capture scanning

behavior without deep packet inspection [27].

3) Multi-source correlation

For flows with a valid destination port, we also record SourceHit (srcIP, timestamp) per

(dstIP:port) victim. We maintain a sliding window of the last 20 seconds. If ≥10 distinct

source IPs target the same victim-port within 20s, we consider this a coordinated botnet

assault. In that case, all those source IPs are immediately blocked. This simple heuristic

catches distributed attacks (e.g., from multiple bots) that individually might not exceed

thresholds, but collectively indicate a pattern. Ten attacker hosts each sent three packets

to the decoy service on port 8080. The app’s multi-IP threshold is set to 10, so after ≥10

different source IPs, all attacking hosts should be blocked.

4) Pseudocode for detection logic

In network security systems, detecting and mitigating malicious activity is crucial for

maintaining system integrity. The detection process often involves multiple stages that

analyze incoming packets, evaluate known attack signatures, assess traffic patterns, and

cross-check behavioral anomalies. This detection logic begins with parsing network

packets to extract key features such as the protocol type, source and destination IP

addresses, and source and destination ports. Once the relevant features are extracted,

the system checks if the source IP address is on a trusted whitelist. If it is, the packet is

ignored. Otherwise, the system proceeds to evaluate the packet for potential threats

using signature-based detection. If the packet matches any known malicious signature,

the associated source IP is blocked, and no further processing occurs for that packet.

Vol. 8, No. 1, February 2026

Nyamwaga M. Kaare, Anael E. Sam | 76

Next, the system updates traffic statistics, keeping track of data like packet length,

protocol, and destination IP. This information feeds into a threshold-based behavioral

detection mechanism. By computing packet rate, byte rate, the number of unique

destination ports, and entropy for each source IP, the system can flag suspicious behavior

based on pre-defined thresholds. For example, high packet or byte rates in conjunction

with specific protocols can indicate potential flooding or denial-of-service attacks. The

detection logic also includes a multi-IP correlation detection step. In this stage, the

system monitors patterns where multiple source IPs target the same destination IP and

port. If the number of source IPs exceeds a certain threshold within a defined time

window, the source IPs are blocked, as this behavior may indicate a coordinated attack.

The pseudocode for implementing this detection logic as follow.

i. Packet Persing
 Upon packet arrival:

 Extract features:
 proto = IPv4 protocol
 srcIP = source IP
 dstIP = destination IP
 srcPort = source port
 dstPort = destination port

ii. Whitelist Check

 if (whitelist.asJavaMap().containsKey(srcIP)) {
 return;
 }

iii. Signature-Based Detection
 For each signature in known malicious signatures:
 If (proto, dstPort, srcIP) matches signature:
 Block srcIP
 Stop further processing of this packet

iv. Update Traffic Statistics
 trafficStats[srcIP].update(packet_length=len, protocol=proto,

dstPort=dstPort, dstIP=dstIP)

v. Threshold-Based Behavioral Detection
 Compute for srcIP:
 pkt_rate = trafficStats[srcIP].getPacketRate()
 byte_rate = trafficStats[srcIP].getByteRate()
 unique_ports = trafficStats[srcIP].getUniqueDstPortCount()
 entropy = trafficStats[srcIP].getEntropy()
 If proto == ICMP:
 If pkt_rate > 100 or byte_rate > 200000 bytes/sec:
 Block srcIP
 Else (proto != ICMP):
 If pkt_rate > 50 or byte_rate > 200000 bytes/sec or

unique_ports > 5 or entropy < 2.0:
 Block srcIP

Vol. 8, No. 1, February 2026

77 | Towards Self-Defending SDN Infrastructure: Real-Time Honeypot-Enabled ….

vi. Multi-IP Correlation Detection

 victim_key = dstIP + ":" + dstPort
 current_time = now()
 victim_map[victim_key].add((srcIP, current_time))
 Remove entries older than 20 seconds from

victim_map[victim_key]
 If size of victim_map[victim_key] >= 10:
 For each srcIP in victim_map[victim_key]:
 Block srcIP
 Clear victim_map[victim_key]

On detection, we use ONOS’s FlowRuleService to apply a temporary drop rule (priority

50000) matching the malicious srcIP on the appropriate switch, with timeout 180s. This

installs the rule in tens of milliseconds, effectively cutting off the attacker (flow setup

performance benefits from ONOS’s design [25]).

2.3. Experimental Setup

We ran experiments in Mininet 2.3.0d6 on the above hardware. Honeypot and decoy

services were simulated using netcat listeners on the specified ports. The ONOS app was

written in Java (JDK 11) and activated on one controller (leader node in the cluster). Test

traffic was generated by Python scripts and built-in tools: attackers used nc for TCP/UDP

or ping for ICMP, following scenarios below. Between tests we cleared rules and state.

We repeated each scenario 5 times to capture variability; overall we report aggregated

results.

2.4. Test Scenarios

We conducted a comprehensive evaluation across six distinct scenarios, each designed

to emulate typical botnet activities and reconnaissance behaviors commonly observed in

network environments:

1) Signature Attacks

In this scenario, a single attacker (h1) initiates multiple connection attempts directed at

the honeypot, targeting TCP ports 23 and 445 as well as UDP port 53, which correspond

to Telnet, SMB, and DNS services, respectively, thereby simulating typical attack patterns

associated with these protocols.

Vol. 8, No. 1, February 2026

Nyamwaga M. Kaare, Anael E. Sam | 78

2) Decoy Access

In this scenario, a legitimate host (h2) establishes connections to each of the decoy

services running on ports 8080, 2222, and 161. These interactions represent normal, non-

malicious activity and are not expected to trigger any blocking mechanisms within the

honeypot system.

3) Port Scan

The benign host (h2) attempts TCP connections to a sequence of 20 consecutive ports,

ranging from 1000 to 1019, on the honeypot. This activity simulates typical legitimate

scanning or service discovery behavior and should not trigger the system’s blocking

mechanisms.

4) Multi-IP Attack

Ten attacker hosts each initiate three rapid connection attempts to the decoy service

running on port 8080 (decoy1), collectively simulating a distributed scanning or

coordinated attack campaign within a 20-second time window.

5) ICMP Flood

Fifty hosts each transmit ICMP echo request packets to the honeypot at a rate of 5

packets per second over a 20-second interval, resulting in an aggregate ICMP traffic rate

of approximately 250 packets per second.

6) Botnet-like Traffic

Fifty hosts each transmit 20 UDP packets targeting 20 distinct high-numbered ports in

the 3000+ range on the honeypot, all within a few seconds, thereby simulating a rapid

distributed scanning activity. After each scenario, we paused 10s and then queried ONOS

via REST to retrieve all installed flow rules. A source IP is considered “blocked” if a flow

matching its IP exists. Results were summarized per-test.

3. RESULTS AND DISCUSSION

3.1. Detection Performance

All malicious scenarios were correctly detected and blocked, while all decoy/benign

traffic passed without interruption. Table 2 summarizes the outcomes. In signature tests,

all 3 Telnet and SMB attempts (per run) and all 5 DNS probes were blocked (100%). The

decoy tests produced 0% false positives: connections to ports 8080, 2222, 161 were never

blocked, as expected. The port-scan of 20 ports triggered an anomaly block (20 unique

Vol. 8, No. 1, February 2026

79 | Towards Self-Defending SDN Infrastructure: Real-Time Honeypot-Enabled ….

ports > threshold), so the scanner was blocked on every run. In the multi-IP test, once

the 10-source threshold was reached, all 10 attackers were blocked, demonstrating

successful correlation-based mitigation. Notably, the ICMP flood (5 pps from 50 hosts)

did not exceed our per-host ICMP threshold (100 pps), so no hosts were blocked; this is

acceptable as the traffic rate was moderate. In the botnet-like UDP test, each of the 50

hosts sent to >5 unique ports, triggering blocks on all 50.

Table 2. Detection and blocking outcomes across test scenarios (averaged over 5 runs)

Test Scenario Description
Outcome

(blocked/attempts)
Detection Rate

Telnet (TCP/23)
3 connections to

honeypot
15/15 blocked (100%) 100%

SMB (TCP/445)
3 connections to

honeypot
15/15 blocked (100%) 100%

DNS (UDP/53) 5 packets to honeypot 25/25 blocked (100%) 100%

Decoy Access Benign
0/15 blocked (0% false

pos.)
0% false positive

Port Scan
20-port scan on

honeypot
5/5 scanner blocked 100%

Multi-IP Attack 10 attackers 10/10 hosts blocked 100%

ICMP Flood
50 hosts ping at 5 pps

(20s) to honeypot
0/50 hosts blocked

Expected (below

threshold)

Botnet-Scan

50 hosts ×20 ports to

unique ports on

honeypot

50/50 hosts blocked 100%

Across all trials, detection latency was low. Signature matches triggered blocking

immediately on first packets. Threshold/correlation triggers occurred within seconds of

attack onset. The ONOS controller’s flow installation time was measured in the 10–50 ms

range, consistent with its high-performance design, so rule propagation was effectively

instantaneous relative to network timescales. The median detection time from the first

malicious packet to rule install was ~1–3 seconds in our tests.

Vol. 8, No. 1, February 2026

Nyamwaga M. Kaare, Anael E. Sam | 80

Detection correctness was evaluated by comparing the set of attacking hosts initiated

by the test harness against the set of source IPs blocked by the controller. Ground-truth

attacker and benign host lists were known a priori for each experiment. After each test

run, the ONOS REST API was queried to extract installed drop rules and identify blocked

source addresses. True positives, false negatives, false positives, and true negatives were

then computed per host and aggregated across all five runs of each scenario, as

summarized in Table 3. For scenarios containing no malicious hosts, precision and recall

are reported as not applicable (N/A).

Table 3. Detection correctness across attack Scenarios

Scenario TP FN FP TN Precision Recall

Signature-based attack 55 0 0 245 1.00 1.00

Distributed scan 50 0 0 200 1.00 1.00

ICMP flood 0 0 0 250 N/A N/A

Multi-IP Attack 10 0 0 200 1.00 1.00

Decoy Traffic (benign) 0 0 0 250 N/A N/A

Port Scan 5 0 0 245 1.00 1.00

Resource utilization measurements indicate that botnet detection and mitigation incur

modest control-plane overhead as shown in figure 2 and figure 3. During active attack

scenarios, controller CPU remained between 10–12% under attack load, with memory

usage below 1.2 GB, confirming modest overhead in our testbed.

Figure 2. Average CPU usage Figure 3. Average Memory Usage

Compared to ML-based SDN detection systems, our rule-based approach avoids the

overhead of training and feature extraction. As noted in the literature, ML detectors can

Vol. 8, No. 1, February 2026

81 | Towards Self-Defending SDN Infrastructure: Real-Time Honeypot-Enabled ….

achieve high accuracy but require labeled data and can suffer from imbalanced or

evolving attacks. In contrast, our entropy-and-threshold method is lightweight and

parameter-based. It can be implemented with simple arithmetic (e.g. Shannon entropy

calculation) and reacts immediately to observed traffic. The ONOS-based implementation

adds negligible processing delay. We anticipate our method will have lower CPU/memory

overhead than a full ML pipeline, at the cost of fixed (non-adaptive) thresholds.

The results demonstrate that combining deception with lightweight SDN-based analytics

provides robust real-time defense without machine learning. Signature detection offers

deterministic identification, while entropy and threshold metrics capture both low-rate

and distributed scanning. Correlation analysis identifies coordinated attacks invisible to

per-host detection. False positives remained at zero across all benign scenarios, and

ONOS's efficient flow-rule installation ensured rapid mitigation. The system’s low

resource footprint further supports deployment in real-world SDN infrastructures. The

primary limitation is the use of Mininet, which lacks realistic traffic diversity, jitter, and

congestion patterns. As a result, threshold values may require adaptation before

deployment in production environments.

3.2. Discussion

This study presented a proactive, automation-based botnet blocking system that

integrates honeypots, Software-Defined Networking (SDN), and automated detection

mechanisms to enhance network resilience against botnet attacks. Our approach

effectively combines multiple detection methods—signature-based detection, statistical

anomaly detection, and multi-source correlation—while minimizing the need for human

intervention and reducing reliance on scarce cybersecurity expertise.

The detection performance of the system was exemplary. All malicious attack scenarios

were successfully detected and blocked, and benign traffic was allowed to pass without

interruption. Notably, signature-based detection enabled rapid identification and blocking

of common attack vectors such as Telnet, SMB, and DNS-based botnet behaviors. The

system demonstrated high accuracy in detecting typical botnet activity, with a detection

rate of 100% across all attack scenarios. Furthermore, the correlation-based multi-IP

detection successfully handled distributed attacks, blocking all involved source IPs once

the predefined threshold was met.

Vol. 8, No. 1, February 2026

Nyamwaga M. Kaare, Anael E. Sam | 82

The experimental results also revealed that the system's real-time detection mechanism

performed well under various attack conditions. In particular, the low detection latency

observed in our experiments (1–3 seconds for rule installation) highlights the efficiency

of the ONOS controller’s flow installation process. This speed is crucial for minimizing

damage during an active attack. The absence of false positives during decoy tests and

benign traffic scenarios indicates that the system can reliably distinguish between

legitimate and malicious traffic.

Resource utilization measurements further underscore the practicality of our approach.

With modest CPU (10–12%) and memory usage (<1.2 GB), the system demonstrated a low

overhead in terms of computational resources, making it suitable for deployment in real-

world SDN infrastructures. This is a significant advantage over machine learning (ML)-

based detection systems, which tend to incur higher computational costs due to training

and feature extraction processes. Our system's lightweight, rule-based design avoids the

need for large training datasets and can quickly adapt to evolving attack patterns without

the computational overhead associated with traditional ML approaches.

One of the main contributions of this study is the integration of deception and

lightweight analytics, which provides real-time defense against botnet attacks. The

combination of honeypots with SDN enables early-stage detection and containment of

malicious traffic, especially through techniques like entropy-based anomaly detection

and multi-source correlation. These methods allow us to identify both low-rate scanning

behaviors and more sophisticated, coordinated botnet attacks that could otherwise

evade traditional per-host detection mechanisms. The flexibility of SDN’s centralized

control plane further ensures that malicious traffic can be blocked quickly and efficiently

across the network.

However, there are several limitations and areas for future improvement. Firstly, the

Mininet-based experimental setup, while effective for initial testing, lacks realistic traffic

patterns, jitter, and congestion found in actual network environments. This limitation

means that the threshold values used for anomaly detection, such as packet rate and

entropy, may need to be fine-tuned for deployment in production systems with more

complex traffic dynamics. Additionally, while our approach successfully handles known

attack types, it may not perform as well against entirely new or previously unseen botnet

Vol. 8, No. 1, February 2026

83 | Towards Self-Defending SDN Infrastructure: Real-Time Honeypot-Enabled ….

behaviors that do not match the predefined signatures or statistical patterns.

Incorporating more adaptive techniques or hybrid approaches that combine rule-based

methods with machine learning could help address this limitation in future work.

Another area for improvement lies in scalability. While the current design performed well

with the limited number of nodes and traffic scenarios in our experiments, deploying the

system at a larger scale, with many more switches and hosts, could introduce challenges

related to scalability and performance. Ensuring that the system remains effective under

high-volume traffic conditions and large-scale network topologies would require further

testing and optimization, particularly in terms of controller performance and the

scalability of the detection mechanisms. Moreover, the current system’s reliance on pre-

defined thresholds for traffic analysis limits its adaptability to dynamic network

environments where traffic patterns may evolve rapidly. Future work could explore

adaptive thresholding techniques or incorporate machine learning for dynamic anomaly

detection to better handle emerging threats.

4. CONCLUSION

This work enhanced SDN security by developing a self-defending ONOS application that

integrates honeypot-based deception with multi-layered detection mechanisms to

identify botnet activity in real time. Experiments conducted in a controlled Mininet

environment demonstrated that the system consistently detected and blocked known

attack signatures, port scans, multi-source coordinated scans, and low-observable

distributed behaviors, while generating no false alarms on legitimate decoy traffic. By

leveraging the centralized SDN paradigm for rapid rule installation and employing

lightweight entropy measurements and heuristic thresholds instead of machine-learning

models, the proposed approach achieves fast, transparent mitigation with minimal

controller overhead.

Limitations and Future Work. Because all evaluations were performed in an emulated

setting, the results may not fully capture the variability, congestion patterns, and

background traffic diversity present in production networks. Consequently, the anomaly-

detection thresholds may require calibration or adaptive adjustment before large-scale

deployment. Future work will focus on integrating adaptive thresholding mechanisms,

Vol. 8, No. 1, February 2026

Nyamwaga M. Kaare, Anael E. Sam | 84

validating the system on physical SDN hardware to assess throughput and latency under

realistic load, and evaluating performance in larger topologies. Additional research will

expand the signature set and examine robustness against stealthy and slow-rate scan

strategies, with the goal of further reducing the likelihood of false negatives.

REFERENCES

[1] N. Hoque, M. H. Bhuyan, R. C. Baishya, D. K. Bhattacharyya, and J. K. Kalita, “Network

attacks: Taxonomy, tools and systems,” J. Netw. Comput. Appl., vol. 40, pp. 307–324,

2014.

[2] M. V. Pawar and J. Anuradha, “Network security and types of attacks in network,”

Procedia Comput. Sci., vol. 48, pp. 503–506, 2015.

[3] R. Masoudi and A. Ghaffari, “Software defined networks: A survey,” J. Netw. Comput.

Appl., vol. 67, pp. 1–25, 2016.

[4] D. B. Rawat, N. Sapavath, and M. Song, “Performance evaluation of deception system

for deceiving cyber adversaries in adaptive virtualized wireless networks,”

presented at the Proceedings of the 4th ACM/IEEE Symposium on Edge Computing,

2019, pp. 401–406.

[5] J. Jang-Jaccard and S. Nepal, “A survey of emerging threats in cybersecurity,” J.

Comput. Syst. Sci., vol. 80, no. 5, pp. 973–993, 2014.

[6] M. Asadi, M. A. J. Jamali, A. Heidari, and N. J. Navimipour, “Botnets unveiled: A

comprehensive survey on evolving threats and defense strategies,” Trans. Emerg.

Telecommun. Technol., vol. 35, no. 11, p. e5056, 2024.

[7] F. Haddadi and A. N. Zincir-Heywood, “Botnet detection system analysis on the

effect of botnet evolution and feature representation,” presented at the

Proceedings of the Companion Publication of the 2015 Annual Conference on

Genetic and Evolutionary Computation, 2015, pp. 893–900.

[8] B. Park, S. P. Dang, S. Noh, J. Yi, and M. Park, “Dynamic Virtual Network Honeypot,”

presented at the 2019 International Conference on Information and Communication

Technology Convergence (ICTC), IEEE, 2019, pp. 375–377.

[9] A. Montazerolghaem, “Software-defined load-balanced data center: design,

implementation and performance analysis,” Clust. Comput., vol. 24, no. 2, pp. 591–610,

2021.

Vol. 8, No. 1, February 2026

85 | Towards Self-Defending SDN Infrastructure: Real-Time Honeypot-Enabled ….

[10] Y. Gautam, B. P. Gautam, and K. Sato, “Experimental security analysis of SDN network

by using packet sniffing and spoofing technique on POX and Ryu controller,”

presented at the 2020 International Conference on Networking and Network

Applications (NaNA), IEEE, 2020, pp. 394–399.

[11] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig,

“Software-defined networking: A comprehensive survey,” Proc. IEEE, vol. 103, no. 1,

pp. 14–76, 2014.

[12] N. M. Yungaicela-Naula, C. Vargas-Rosales, J. A. Pérez-Díaz, and M. Zareei, “Towards

security automation in software defined networks,” Comput. Commun., vol. 183, pp.

64–82, 2022.

[13] M. Drašček, S. Slapničar, T. Vuko, and M. Čular, "How Effective Is Your Cybersecurity

Audit?," ISACA J., vol. 3, pp. 1-6, 2022.

[14] M. Du and K. Wang, “An SDN-enabled pseudo-honeypot strategy for distributed

denial of service attacks in industrial Internet of Things,” IEEE Trans. Ind. Inform.,

vol. 16, no. 1, pp. 648–657, 2019.

[15] J. Cui, M. Wang, Y. Luo, and H. Zhong, “DDoS detection and defense mechanism based

on cognitive-inspired computing in SDN,” Future Gener. Comput. Syst., vol. 97, pp.

275–283, 2019.

[16] Z. Liu, Y. He, W. Wang, and B. Zhang, “DDoS attack detection scheme based on entropy

and PSO-BP neural network in SDN,” China Commun., vol. 16, no. 7, pp. 144–155, 2019.

[17] M. Myint Oo, S. Kamolphiwong, T. Kamolphiwong, and S. Vasupongayya, “Advanced

support vector machine-(ASVM-) based detection for distributed denial of service

(DDoS) attack on software defined networking (SDN),” J. Comput. Netw. Commun.,

vol. 2019, 2019.

[18] H. Peng, Z. Sun, X. Zhao, S. Tan, and Z. Sun, “A detection method for anomaly flow in

software defined network,” IEEE Access, vol. 6, pp. 27809–27817, 2018.

[19] H. Pillutla and A. Arjunan, “Fuzzy self-organizing maps-based DDoS mitigation

mechanism for software defined networking in cloud computing,” J. Ambient Intell.

Humaniz. Comput., vol. 10, no. 4, pp. 1547–1559, 2019.

[20] A. I. Hassan, E. A. El Reheem, and S. K. Guirguis, “An entropy and machine learning

based approach for DDoS attacks detection in software defined networks,” Sci. Rep.,

vol. 14, no. 1, p. 18159, Aug. 2024, doi: 10.1038/s41598-024-67984-w.

Vol. 8, No. 1, February 2026

Nyamwaga M. Kaare, Anael E. Sam | 86

[21] W. Fan and D. Fernández, “A novel SDN based stealthy TCP connection handover

mechanism for hybrid honeypot systems,” presented at the 2017 IEEE Conference

on Network Softwarization (NetSoft), IEEE, 2017, pp. 1–9.

[22] H. Ichise, Y. Jin, K. Iida, and Y. Takai, “Detection and blocking of anomaly DNS Traffic

by analyzing achieved NS record history,” presented at the 2018 Asia-Pacific Signal

and Information Processing Association Annual Summit and Conference (APSIPA

ASC), IEEE, 2018, pp. 1586–1590.

[23] S. Achleitner, T. F. La Porta, P. McDaniel, S. Sugrim, S. V. Krishnamurthy, and R. Chadha,

“Deceiving network reconnaissance using SDN-based virtual topologies,” IEEE Trans.

Netw. Serv. Manag., vol. 14, no. 4, pp. 1098–1112, 2017.

[24] F. Ja’fari, S. Mostafavi, K. Mizanian, and E. Jafari, “An intelligent botnet blocking

approach in software defined networks using honeypots,” J. Ambient Intell.

Humaniz. Comput., vol. 12, no. 2, pp. 2993–3016, 2021.

[25] Tasoskourouniadis, Tasoskourouniadis onos app-samples (Sept. 01, 2023) Java

ONOS: Open Network Operating System, Accessed: Dec. 07, 2025. [Online]. Available:

https://github.com/Tasoskourouniadis/onos-app-samples-2.7.0

[26] C. Guan and G. Cao, “{Cyber-Physical} Deception Through Coordinated {IoT}

Honeypots,” in 34th USENIX Security Symposium (USENIX Security 25), 2025, pp.

529–545.

[27] V. Bashurov and P. Safonov, “Anomaly detection in network traffic using entropy-

based methods: application to various types of cyberattacks.,” Issues Inf. Syst., vol.

24, no. 4, 2023.

