
Vol. 7, No. 4, December 2025 

 
 

4294 

Journal of Information Systems and Informatics | ISSN: 2656-5935 | e-ISSN: 2656-4882 | pp: 4294-4329 

Published by Asosiasi Doktor Sistem Informasi Indonesia 

YOLOv11-Based Automated PPE Detection System for Workplace 

Safety Monitoring in Electric Power Distribution Operations 

 

Jevon Ordrick1, Galih Hendra Wibowo2, Arif Fahmi3, Indra Kurniawan4, Endi Sailul Haq5 

 
1Business and Informatics Department, Applied Undergraduate, Banyuwangi State Polytechnic, Banyuwangi, 

Indonesia 
2,3,4,5Business and Informatics Department, Faculty of Business and Informatics, Banyuwangi State 

Polytechnic, Banyuwangi, Indonesia 

Email:  jevonordrick53@gmail.com1, galih@poliwangi.ac.id2, ariffahmi@poliwangi.ac.id3, 

indranaftena@gmail.com4, esailulhaq@gmail.com5 

 

Received: Nov 4, 2025  

Revised: Nov 24, 2025 

Accepted: Dec 4, 2025 

Published: Dec 26, 2025 

  

 

 

Corresponding Author:  

Author Name*: 

Jevon Ordrick 

Email*: 

jevonordrick53@gmail.com 

 

 

 

DOI: 

10.63158/journalisi.v7i4.1379 

 

 

 

© 2025 Journal of 

Information Systems and 

Informatics. This open 

access article is distributed 

under a (CC-BY License)  

 

Abstract. Manual monitoring of Personal Protective Equipment 

(PPE) compliance in electric power distribution is prone to human 

error, limited supervision, and geographically dispersed work sites. 

This study proposes an automated PPE detection system using the 

YOLOv11 deep learning model to enhance safety monitoring at PT 

PLN (Persero) UP3 Banyuwangi. A dataset of 589 images containing 

1,425 labeled PPE instances across seven categories was used to 

train the YOLOv11s model. The system was deployed via a web-

based application with adjustable detection thresholds and 

validated through interviews with three OHS supervisors. It 

achieved 94.0% precision, 90.1% recall, and 92.8% mAP@50, with 

perfect detection for persons and near-perfect results for full-

body harnesses. The application processed images in 2–3 seconds 

on standard CPU hardware, supporting automated documentation 

for compliance reporting. This is the first known YOLOv11-based 

PPE detection system tailored to electric power distribution 

settings. While results are promising, limitations include a small 

validation set and lower accuracy in detecting safety boots. Future 

work should explore real-time video analysis, system integration, 

and long-term studies on safety compliance improvements. 
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1. INTRODUCTION 

 

Workplace safety remains a critical concern in high-risk industries, particularly in electric 

power distribution operations where workers face electrical hazards, working at heights, 

and dangerous conditions. Personal Protective Equipment (PPE) serves as the last line of 

defense against workplace injuries and fatalities [1], [2]. Despite comprehensive safety 

regulations and contractual obligations mandating PPE usage, compliance monitoring 

continues to pose significant challenges for safety supervisors in field operations [3], [4]. 

At PT PLN (Persero) UP3 Banyuwangi, an electric power distribution company in Indonesia, 

PPE requirements are explicitly defined in vendor contracts based on risk levels, with 

high-risk operations mandating full-body harness and 20kV insulated gloves. Current 

safety inspection protocols involve manual visual checks by Occupational Health and 

Safety (OHS) supervisors during briefings, work execution, and end-of-shift periods for 

work groups of 15-20 workers. However, this approach encounters operational limitations 

insufficient supervisors relative to workforce size, geographically distributed work 

locations preventing direct supervision, and human error in safety compliance 

documentation [5], [6]. 

 

Recent advances in computer vision and deep learning have enabled automated 

detection systems for industrial safety applications [7], [8]. The You Only Look Once 

(YOLO) family of object detection algorithms has demonstrated exceptional performance 

in real-time detection tasks, making it suitable for workplace safety monitoring [9], [10]. 

Several studies have explored YOLO-based approaches for PPE detection across various 

industrial contexts. Implemented YOLO for detecting complete safety equipment in 

construction projects, demonstrating automated compliance checking feasibility [1]. 

Developed a YOLO-based architecture specifically for PPE detection in construction sites 

with promising accuracy [2]. Integrated YOLO methods for PPE detection in oil and gas 

industries, highlighting the method's adaptability [11]. 

 

Advanced YOLO variants address specific detection challenges in industrial environments. 

Proposed ESPCN-YOLO framework for low-light and small object conditions [12]. 

Implemented YOLO with deep reinforcement learning for automatic PPE monitoring of 

construction workers [13]. In hazardous areas, [14] demonstrated YOLOv5 implementation 

for detecting PPE completeness, while [15] applied deep learning for automatic PPE 
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detection in oil and gas workers. Designed applications for detecting worker PPE in 

construction projects using YOLOv5 [16]. Recent developments include deep learning-

based algorithms [17] and fast detection approaches [10] for real construction sites. 

 

Additional research has explored various aspects of PPE detection systems. Developed 

automated hard hat identification in construction sites using deep learning [18]. Proposed 

helmet detection methods for motorcycle riders using deep learning approaches [19]. 

Investigated worker safety detection in construction sites through computer vision 

techniques [20]. Developed real-time detection systems for construction worker safety 

helmet wearing based on improved YOLOv5 [21]. Explored safety helmet wearing 

detection using multi-scale representations [22]. Reviewed vision-based construction 

safety systems including PPE detection [23]. Investigated mobile passive radio frequency 

identification systems for real-time safety helmet detection [24]. Developed framework 

for vision-based safety management using image sequences [25]. These studies 

collectively demonstrate growing interest in automated safety monitoring but reveal 

application gaps in specific industrial contexts. 

 

Despite these advances, several critical gaps remain unaddressed. First, most existing 

studies focus on construction sites with limited application to electric power distribution 

environments where specific PPE requirements differ significantly, particularly regarding 

insulated gloves and full-body harness for electrical work [11], [15]. Second, previous 

research has not adequately addressed integration of automated detection systems with 

existing safety documentation workflows, specifically automatic generation of 

compliance reports required by supervisors [2], [10]. Third, there is limited investigation 

into optimizing detection performance for specific PPE types critical to electrical work 

[14], [16]. Fourth, practical deployment through user-friendly interfaces for field 

supervisors has received insufficient attention [1], [17]. 

 

This research addresses these gaps by developed an automatic PPE detection system 

specifically tailored for electric power distribution operations using YOLOv11 architecture, 

integrating real-time detection with automatic reporting features to streamline safety 

compliance documentation. The objectives are: (1) to develop a YOLOv11-based deep 

learning model optimized for detecting seven critical PPE types used in electric power 

distribution work; (2) to implement a web-based application interface enabling field 
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supervisors to perform instant PPE compliance checks with adjustable detection 

parameters; and (3) to evaluate the system's performance and practical applicability in 

addressing current manual inspection limitations at PT PLN UP3 Banyuwangi. 

 

2. METHODS 

 

2.1. Research Design and Workflow 

This research employed an experimental design approach selected due to the 

requirement for model performance comparison and controlled evaluation of detection 

accuracy. The study was conducted in collaboration with PT PLN (Persero) UP3 

Banyuwangi during July to November 2025.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Research Workflow 

 

The research workflow consisted of five sequential phases as illustrated in Figure 1. Phase 

1: Problem Identification and Requirements Analysis - Field observations and semi-

Problem Identification 

• Field observations 

• Supervisor interviews (n=3) 

• Requirements analysis 

Data Collection 

• Image collection (589 images) 

• Anonymization & consent 

• Annotation (7 PPE classes) 

• Dataset split (92%/4%/4%) 

Model Development 

• YOLOv11s architecture selection 

• Custom hyperparameters 

• Training (120 epochs, Tesla T4) 

• Validation & optimization 

System Implementation 

• Web application (Streamlit)  

• Security safeguards  

• User interface design  

• Model deployment 

Evaluation & Validation 

• Performance metrics calculation 

• Field validation (3 supervisors) 

• Usability testing 

• Feedback analysis 
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structured interviews with three OHS supervisors identified manual inspection limitations 

including insufficient supervisor-to-worker ratio (1:15-20), geographically distributed work 

locations, and human error in compliance documentation. Safety requirements specific 

to electric power distribution were documented, including mandatory PPE types for high-

risk operations. Phase 2: Data Collection and Preparation - Images of workers wearing 

various PPE configurations were collected from multiple work sites under diverse 

conditions. All participants provided informed consent for image collection. Dataset 

annotation was performed using Roboflow platform, followed by stratified splitting and 

augmentation to enhance model generalization. 

 

Phase 3: Model Development and Training - YOLOv11s architecture was selected and 

configured with custom hyperparameters optimized for PPE detection. Transfer learning 

from COCO pre-trained weights was employed. The model was trained on Google 

Colaboratory with Tesla T4 GPU, with performance monitored through validation metrics 

across 120 epochs. Phase 4: System Implementation and Deployment - The trained model 

was integrated into a web-based application using Streamlit framework. The interface 

was designed based on supervisor feedback during requirements analysis, featuring 

adjustable detection thresholds.  Phase 5: Performance Evaluation and Field Validation - 

Model performance was evaluated using standard object detection metrics on 

independent test set. Field validation was conducted through demonstrations to three 

OHS supervisors who provided structured feedback on system usability, accuracy 

perception, and integration feasibility with existing workflows. 

 

2.2. Dataset Preparation 

The dataset comprised 589 images of electric power distribution workers wearing various 

PPE configurations, with a total of 1,425 annotated object instances where each image 

may contain multiple PPE objects depending on worker equipment completeness. Images 

were collected from multiple work sites and operational scenarios, captured using 

standard mobile phone cameras (resolution 1920×1080 to 4032×3024 pixels) under 

diverse lighting conditions (outdoor daylight, indoor artificial lighting, overcast 

conditions) and viewing angles (front, side, elevated perspectives) to ensure model 

robustness across realistic field conditions. All workers provided informed consent for 

image collection. The dataset included seven object classes based on mandatory PPE 

requirements at PT PLN UP3 Banyuwangi: safety helmet (Helm_Safety), safety glasses 
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(Kacamata), person (Person), safety vest (Rompi), safety boots (Safety_boots), safety 

gloves (Sarung_Tangan), and full-body harness (full-body-harness).  

 

Table 1. Dataset Class Distribution 

Class 
Training 

Instances 

Validation 

Instances 

Test 

Instances 

Total 

Instances 
Percentage 

Sarung_Tangan 254 11 11 276 19.4% 

Safety_boots 237 11 10 258 18.1% 

Person 196 9 8 213 15.0% 

Helm_Safety 166 7 7 180 12.6% 

Kacamata 166 7 7 180 12.6% 

full-body-harness 152 7 6 165 11.6% 

Rompi 141 6 6 153 10.7% 

Total Instances 1,312 58 55 1,425 100% 

Total Images 543 23 23 589 - 

 

 
Figure 2. Dataset Distribution and Bounding Box Analysis 
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Class distribution is presented in Table 1 and visualized in Figure 2, showing 

Sarung_Tangan as the most frequent class (276 instances, 19.4%) due to consistent glove 

usage and clear visibility of hand positions in work documentation photographs, followed 

by Safety_boots (258 instances, 18.1%) which are typically visible in lower frame regions. 

The Person class represents 213 instances (15.0%), indicating the number of detected 

workers with some images containing multiple workers in group work scenarios. 

Helm_Safety and Kacamata show identical frequencies (180 instances each, 12.6%), 

demonstrating balanced usage of head and eye protection equipment in field operations. 

The full-body harness class contains 165 instances (11.6%), as this equipment is specific 

to elevated work scenarios and not required in all ground-level operations. Rompi has 

the lowest representation (153 instances, 10.7%), potentially due to occlusion by other 

equipment or unfavorable camera angles limiting vest visibility. 

 

Dataset annotation was performed using Roboflow platform, which provided 

comprehensive tools for bounding box labeling and quality control. Each image was 

manually annotated by trained annotators with verification by domain experts to ensure 

annotation accuracy. The dataset was split into training (92%, 543 images with 1,312 

instances), validation (4%, 23 images with 58 instances), and testing (4%, 23 images with 

55 instances) subsets following standard machine learning practices. While the validation 

and test sets are relatively small due to limited available annotated data from field 

operations, they represent realistic operational scenarios. Future work should incorporate 

larger validation datasets (minimum 100-200 images) for more reliable generalization 

assessment and performance stability evaluation. 

 

To enhance model generalization and prevent overfitting, data augmentation techniques 

were applied to the training set with output multiplier of 3× per image. Augmentation 

strategies included: horizontal flip (50% probability), rotation between -10° to +10°, 

horizontal and vertical shear of ±2°, saturation adjustment between -34% to +34%, 

brightness variation between -20% to +20%, blur up to 0.9 pixels, and noise injection up 

to 0.88% of pixels. These augmentations simulate realistic field variations including 

changing lighting conditions, worker orientations, and environmental factors. All images 

were resized to 736×736 pixels resolution with auto-orientation applied to maintain 

aspect ratio consistency, chosen to balance detection accuracy for small objects (safety 

boots, glasses) and computational efficiency. 
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Spatial distribution analysis of bounding boxes (Figure 2) reveals important 

characteristics of the dataset. The scatter plot of center coordinates (x, y) shows 

concentration in central image regions (x: 0.4-0.6, y: 0.3-0.7), consistent with worker body 

anatomy positioning in typical work documentation photographs where subjects are 

centered in frame. The width-height distribution indicates that most bounding boxes are 

relatively small (normalized width and height < 0.2), particularly for Kacamata, 

Sarung_Tangan, and Safety_boots classes which have smaller physical dimensions 

compared to Person or Rompi. This characteristic emphasizes the importance of small 

object detection capability in the model architecture, influencing the choice of 736×736 

pixel resolution and multi-scale feature extraction mechanisms in YOLOv11 to maintain 

adequate spatial resolution for small PPE items. 

 

2.3. Model Architecture and Training Configuration 

The YOLOv11s (small) architecture was selected as the base model, offering an optimal 

balance between detection accuracy and computational efficiency suitable for 

deployment on standard hardware without specialized GPU resources. YOLOv11s was 

chosen over larger variants (YOLOv11m, YOLOv11l) based on several considerations: (1) 

parameter efficiency with 9.4M parameters versus 20.1M (YOLOv11m) and 25.3M 

(YOLOv11l), enabling faster inference on CPU hardware; (2) computational requirements 

of 21.6 GFLOPs compared to 68.2 GFLOPs (YOLOv11m) and 87.6 GFLOPs (YOLOv11l), critical 

for real-time processing without GPU; (3) deployment feasibility on supervisor tablets or 

standard computers in field offices; and (4) preliminary testing showing YOLOv11s 

achieved 92.8% mAP@50 compared to 94.1% for YOLOv11m, representing only 1.3% 

accuracy trade-off for 3× faster inference speed. 

 

The model architecture consists of 181 layers with computational complexity of 21.6 

GFLOPs. Transfer learning approach was employed by initializing with pre-trained weights 

from COCO dataset, which were then fine-tuned for the specific PPE detection task 

through 120 epochs of training. 

 

Training was conducted on Google Colaboratory platform utilizing Tesla T4 GPU (15GB 

VRAM) with CUDA 12.4 acceleration. The training process employed automatic batch size 

determination (batch=-1), which optimized to 22 images per batch based on available GPU 

memory at 62% utilization, maximizing training efficiency while preventing out-of-
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memory errors. Key training hyperparameters included: learning rate of 0.003 with cosine 

learning rate scheduler for smooth convergence, patience of 40 epochs for early 

stopping to prevent overfitting, and mosaic augmentation disabled for the last 10 epochs 

(close_mosaic=10) to improve final boundary box accuracy. 

 

Custom augmentation configurations balanced photometric and geometric 

transformations while preserving critical visual features of PPE objects. Photometric 

augmentations included HSV hue variation of 0.015, saturation of 0.7, and value of 0.4. 

Geometric augmentations comprised rotation of ±10°, translation of 0.08, scale of 0.9, 

shear of 2.0°, and perspective transformation of 0.0005. Advanced augmentation 

techniques included mosaic at 0.6 probability (reduced from default due to Roboflow 

pre-augmentation), mixup at 0.1 probability, and random erasing at 0.3 probability to 

simulate partial occlusion. Vertical flipping was disabled (flipud=0.0) as workers are 

typically upright, while horizontal flipping was maintained at 0.5 probability. 

 

Training optimization employed AdamW optimizer with automatic parameter 

determination, weight decay of 0.0005, momentum of 0.9, and warmup period of 3 

epochs. Mixed precision training (AMP) was enabled to accelerate computation. Model 

checkpointing saved both best performing weights based on validation mAP@50-95 and 

final epoch weights. 

 

2.4. Model Evaluation Metrics 

Model performance was evaluated using standard object detection metrics computed at 

confidence threshold of 0.35 and Intersection over Union (IoU) threshold of 0.55 for Non-

Maximum Suppression (NMS). The confidence threshold of 0.35 was selected based on 

F1-Confidence curve analysis showing optimal F1 scores at this level, balanced with 

supervisor feedback during preliminary testing indicating acceptable false positive rates. 

The IoU threshold of 0.55 was chosen to ensure tight localization accuracy while 

accommodating slight variations in bounding box annotations. 

 

Primary evaluation metrics included: Precision, measuring the proportion of correct 

positive predictions among all positive predictions (Precision = TP / (TP + FP)); Recall, 

measuring the proportion of correct positive predictions among all actual positive 

instances (Recall = TP / (TP + FN)); mean Average Precision at IoU threshold of 0.50 
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(mAP@50), representing the average precision across all classes at 50% IoU threshold; 

and mean Average Precision at IoU thresholds from 0.50 to 0.95 (mAP@50-95), providing 

a more stringent evaluation across multiple IoU levels with 0.05 step increments. 

 

Performance analysis was conducted through: Precision-Recall (PR) curves showing the 

trade-off between precision and recall across different confidence thresholds; F1-

Confidence curves identifying the optimal confidence threshold maximizing the harmonic 

mean of precision and recall; Precision-Confidence and Recall-Confidence curves 

illustrating individual metric behavior; and confusion matrices (both normalized and 

absolute) revealing class-wise detection performance and common misclassification 

patterns. 

 

2.5. System Implementation 

The trained model was deployed through a web-based application developed using 

Streamlit framework (Python 3.12). The application architecture consisted of three main 

components: model inference engine utilizing Ultralytics YOLO library for real-time 

detection, image processing module using Python Imaging Library (PIL) for handling user 

uploads and visualization, and user interface providing intuitive controls for parameter 

adjustment. 

 

Security safeguards and input validation were implemented including: file type validation 

restricting uploads to JPG, JPEG, and PNG formats only; file size limits (maximum 10MB) 

to prevent denial-of-service attacks; image dimension validation ensuring uploaded 

images are between 100×100 and 4096×4096 pixels; and server-side path sanitization to 

prevent directory traversal attacks. The application runs in isolated container 

environment without external network access during inference to protect sensitive 

worker images. 

 

The web interface featured: file upload functionality supporting JPG, JPEG, and PNG 

formats; interactive sliders for adjusting confidence threshold (0.0-1.0, default 0.35) and 

IoU threshold (0.1-0.9, default 0.55); side-by-side visualization of original and annotated 

images with bounding boxes and class labels; and detailed detection list displaying 

detected PPE items with corresponding confidence scores formatted to two decimal 

places. Detection results were visualized using green bounding boxes with lime-colored 
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background labels containing class names and confidence values. The system employed 

model caching mechanism (@st.cache_resource decorator) to load the model once and 

reuse it across multiple predictions, reducing response time from 5-7 seconds (cold start) 

to 2-3 seconds (subsequent predictions). Early usability testing with three OHS 

supervisors revealed positive feedback on interface intuitiveness (average System 

Usability Scale score: 78.3/100), with recommendations for adding batch processing 

capabilities and automated report export implemented in subsequent iterations. 

 

2.6. Field Validation 

Field validation was conducted through semi-structured interviews with three OHS 

supervisors at PT PLN UP3 Banyuwangi to assess system practical applicability. The 

validation process examined: current manual inspection workflow and associated 

challenges, system integration feasibility with existing safety documentation procedures, 

perceived usefulness in addressing supervisor limitations, and potential operational 

barriers to system adoption. Interview responses were analyzed thematically and 

summarized in Table 2, showing strong consensus on system utility for addressing 

current limitations while identifying implementation considerations for operational 

deployment. 

 

Table 2. Field Validation Summary from OHS Supervisor Interviews 

Theme Key Findings 
Supervisor 

Agreement 

Current 

Challenges 

Insufficient supervisor-to-worker ratio (1:15-20); 

Distributed work locations; Manual documentation 

burden; Human error in visual inspection 

3/3 

System Accuracy 

Perception 

High confidence in detection for visible PPE; Concerns 

about partially occluded items 
2/3 

Usability 
Intuitive interface; Quick processing time acceptable; 

Threshold adjustment useful 
3/3 

Integration 

Feasibility 

Can supplement existing inspections; Requires minimal 

training; Compatible with current workflow 
2/3 

Operational 

Barriers 

Need for tablet/computer at field sites; Internet 

connectivity for cloud deployment 
1/3 
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Theme Key Findings 
Supervisor 

Agreement 

Perceived 

Benefits 

Objective documentation; Time savings; Consistency 

across inspections; Audit trail generation 
3/3 

Supervisors particularly valued consistency in detection across multiple workers and time 

periods, objective documentation with confidence scores supporting defensible safety 

records, scalability to monitor distributed work locations through image capture and 

remote analysis, and time efficiency in generating compliance reports. 

 

3. RESULTS AND DISCUSSION 

 

3.1. Model Training Performance 

The YOLOv11s model training process demonstrated progressive improvement across 120 

epochs, with convergence patterns indicating effective learning without overfitting. 

Training loss components (box_loss, cls_loss, and dfl_loss) exhibited consistent decline 

throughout the training period. The box regression loss decreased from 1.999 at epoch 1 

to 0.800 at epoch 120, classification loss reduced from 3.866 to 0.415, and distribution 

focal loss declined from 2.066 to 1.144, demonstrating successful optimization of 

detection accuracy. Table 3 summarizes key performance metrics at different training 

milestones, showing steady progression toward final model performance. 

 

Table 3. Training Performance Summary at Key Milestones 

Epoch Precision Recall mAP@50 mAP@50-95 Box Loss Cls Loss DFL Loss 

1 0.530 0.381 0.458 0.205 1.999 3.866 2.066 

20 0.862 0.799 0.874 0.456 1.487 1.270 1.600 

40 0.815 0.856 0.907 0.543 1.317 0.921 1.437 

60 0.830 0.938 0.928 0.578 1.264 0.804 1.353 

80 0.838 0.852 0.906 0.618 1.081 0.653 1.268 

106 (Best) 0.919 0.898 0.939 0.657 0.977 0.579 1.194 

120 (Final) 0.915 0.872 0.940 0.648 0.800 0.415 1.144 
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Validation metrics showed steady improvement with notable milestones. The model 

achieved its best performance at epoch 106, recording 91.9% precision, 89.8% recall, 93.9% 

mAP@50, and 65.7% mAP@50-95. Early training phases (epochs 1-20) exhibited high 

variability as the model adjusted from COCO pre-trained weights to PPE-specific 

features. Mid-training period (epochs 20-80) demonstrated consistent performance 

gains. The final training phase (epochs 80-120) with mosaic augmentation disabled 

resulted in refined convergence, with the model maintaining stable performance without 

degradation. The training process utilized approximately 14 seconds per epoch with GPU 

memory consumption stabilized at 7.39GB, demonstrating efficient resource utilization 

and feasibility for researchers with limited computational resources. 

 

3.2. Validation Results and Class-Specific Performance 

The final model evaluation on the independent validation set yielded overall metrics of 

94.0% precision, 90.1% recall, 92.8% mAP@50, and 66.7% mAP@50-95, demonstrating 

robust generalization capability. These results indicate the model can reliably detect PPE 

items with minimal false positives (high precision) while successfully identifying most 

actual instances (high recall). The 92.8% mAP@50 suggests strong localization accuracy, 

while the 66.7% mAP@50-95 reflects performance under more stringent IoU 

requirements. 

 

However, it is important to acknowledge that the validation dataset size (23 images, 58 

object instances) is relatively small, with class-wise instance distribution ranging from 6 

instances (Rompi, full-body-harness) to 18 instances (Person). This class imbalance in 

validation data, combined with overall small sample size, limits the statistical reliability 

of these metrics and confidence in generalization performance estimates. While the 

results are promising and consistent with training performance trends, they should be 

interpreted with caution until validated on larger, more diverse test sets spanning 

additional work sites, seasonal variations, and worker populations. Future research should 

incorporate validation datasets of at least 100-200 images with more balanced class 

representation to provide more robust generalization assessment and confidence 

intervals for performance metrics. Class-specific performance analysis revealed 

significant variations across PPE categories as presented in Table 4. 
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Table 4. Class-Specific Performance Metrics on Validation Dataset 

Class Images Instances Precision Recall mAP@50 mAP@50-95 

All 23 58 0.940 0.901 0.928 0.667 

Helm_Safety 7 7 1.000 0.857 0.928 0.636 

Person 16 18 1.000 1.000 0.995 0.743 

Rompi 8 8 0.889 1.000 0.982 0.621 

Safety_boots 9 16 0.750 0.750 0.756 0.556 

Sarung_Tangan 7 11 1.000 0.807 0.909 0.668 

full-body-harness 6 8 1.000 0.994 0.995 0.776 

 

The Person class achieved perfect detection performance with 100% precision and 100% 

recall (mAP@50: 99.5%, mAP@50-95: 74.3%), indicating the model's strong capability in 

human detection as the foundational step before PPE assessment. This excellent 

performance is attributable to the Person class having relatively large object size, 

distinctive human silhouette features, and abundant training examples (196 instances in 

training set). 

 

Full-body harness detection demonstrated excellent results with 100% precision and 

99.4% recall (mAP@50: 99.5%, mAP@50-95: 77.6%), suggesting the model can reliably 

identify this critical safety equipment with minimal false positives or missed detections, 

particularly important for high-risk electrical work at heights. The high performance is 

notable given the class's moderate representation in training data (152 instances), likely 

due to the harness's distinctive visual features including bright-colored straps and 

characteristic X-pattern across the worker's torso. 

 

Safety helmet (Helm_Safety) achieved 100% precision and 85.7% recall (mAP@50: 92.8%, 

mAP@50-95: 63.6%), indicating occasional missed detections (1 out of 7 instances in 

validation set, likely due to partial occlusion or extreme viewing angles where helmet rim 

is barely visible) but no false positives when detected. The perfect precision suggests 

that when the model identifies a helmet, the detection is highly reliable. 
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Safety vest (Rompi) showed 88.9% precision and 100% recall (mAP@50: 98.2%, mAP@50-

95: 62.1%), with perfect recall indicating no missed detections but occasional false 

positives (11.1% of detections), possibly due to similar-colored clothing items or reflective 

surfaces that visually resemble high-visibility vests in certain lighting conditions. 

 

Safety gloves (Sarung_Tangan) demonstrated 100% precision and 80.7% recall (mAP@50: 

90.9%, mAP@50-95: 66.8%), suggesting high reliability when detected but some missed 

instances (approximately 2 out of 11 in validation set), likely attributable to hand positions 

(behind body, holding tools, inside pockets) or glove color similarity to skin tones in 

certain lighting. It is noteworthy that while Sarung_Tangan has the highest instance count 

in the overall dataset (276 instances, 19.4%), its representation in the validation set is 

proportionally smaller (11 instances), which may contribute to the observed 80.7% recall. 

Safety boots presented the most challenging detection scenario with 75.0% precision and 

75.0% recall (mAP@50: 75.6%, mAP@50-95: 55.6%), indicating difficulties in both 

detection completeness and localization accuracy. Despite having the second-highest 

instance count in the overall dataset (258 instances, 18.1%), Safety_boots shows 

substantially lower performance compared to other classes. This performance gap is 

particularly significant given the large training sample size, suggesting inherent detection 

challenges rather than insufficient training data. The limited validation instances (16) 

combined with small object size makes performance assessment less statistically robust, 

emphasizing the need for expanded validation datasets specifically targeting this 

problematic class. 

 

The confusion matrix analysis (Figure 3) revealed specific error patterns. Safety boots 

showed the highest confusion with background (false negatives, approximately 4 missed 

detections out of 16 instances), likely attributable to: (1) small object size relative to image 

dimensions (boots typically occupy <5% of image area, as shown in Figure 2 width-height 

distribution where most boots fall in the 0.05-0.15 range); (2) partial occlusion by 

surrounding environment, vegetation, equipment, or even the worker's own legs and body 

positioning; (3) low visual contrast in certain work conditions, particularly on dirt, gravel, 

or concrete surfaces where black or dark-colored safety boots blend with the 

background; and (4) similar appearance to regular footwear in some scenarios when 

distinctive safety features (steel toe caps, high ankle design, reflective strips) are not 

clearly visible due to camera angle or distance. 
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Figure 3. Confusion Matrix 

 

Safety helmet occasionally registered missed detections (1 out of 7 instances), potentially 

due to viewing angles where helmets are partially visible or workers bending over during 

task execution, causing the helmet to be seen primarily from the top where distinctive 

features (brim, suspension system) are less apparent. These findings align with previous 

PPE detection studies reporting similar challenges with smaller and partially occluded 

equipment [2][10][26]. However, the excellent performance on safety-critical items for 

electrical work (full-body harness with 99.5% mAP@50, safety helmet with 92.8% 

mAP@50) suggests the model is well-suited for its primary application domain despite 

limitations on smaller equipment like safety boots. 

 

3.3. Detection Visualization and Precision-Recall Analysis 

The Precision-Recall curves (Figure 4) demonstrated strong performance characteristics 

across all classes, with most curves approaching the top-right corner indicating high 

precision maintained across varying recall levels. Comparing curve shapes explicitly 

between classes reveals distinct model strengths and weaknesses: 
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Figure 4. Precision Recall Curve 

 

Strong Performers (Person, full-body-harness, Rompi): These classes exhibit nearly 

rectangular PR curves with precision maintaining above 0.90 even at high recall levels 

(>0.95), indicating consistent detection across diverse scenarios. The large surface areas 

and distinctive visual features (human silhouette, harness straps crossing the torso, high-

visibility vest colors in yellow or orange) enable robust feature extraction by the model's 

backbone network. Person and full-body-harness achieve area under curve (AUC) values 

approaching 0.995, representing near-perfect detection capability. 

 

Moderate Performers (Helm_Safety, Sarung_Tangan): These classes show gradual 

precision decline as recall increases, with curves maintaining above 0.80 precision until 

0.85-0.90 recall. The moderate performance reflects challenges in detecting partially 

visible items (helmets viewed from rear or side angles where brim is less distinctive, 

gloves while holding objects or with hands positioned behind the body) while maintaining 

low false positive rates. The curves show smooth decline rather than abrupt drops, 

suggesting the model has learned meaningful features but struggles with edge cases. 
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Challenging Class (Safety_boots): The PR curve exhibits steeper decline, dropping below 

0.80 precision at 0.70 recall, indicating the model struggles to simultaneously achieve 

high precision and recall for this small, frequently occluded object class. This pattern 

suggests the need for targeted improvements through additional training data focused 

on boot detection from various angles (ground-level, elevated, side views), occlusion 

scenarios (partial visibility behind equipment), and surface contexts (concrete, dirt, grass). 

The AUC of 0.756 is significantly lower than other classes, confirming this as the primary 

performance limitation of the current system. 

 

The area under PR curves closely approached 1.0 for Person (0.995), full-body-harness 

(0.995), and Rompi (0.982) classes, confirming excellent detection capability. Safety boots 

exhibited a lower PR curve area (0.756), consistent with its quantitative metrics and 

confusion matrix patterns. 

 

 

Figure 5. F1-Confidence 

 

F1-Confidence curves (Figure 5) identified optimal operating points for each class, with 

peak F1 scores occurring at confidence thresholds between 0.35-0.50 for most classes. 

This analysis informed the default confidence threshold setting of 0.35 in the deployed 
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application, balancing precision and recall for practical field use while allowing 

supervisors to adjust based on specific operational contexts (e.g., raising threshold to 

0.50 for routine monitoring to minimize false positives, lowering to 0.25 for 

comprehensive pre-work inspections to maximize detection completeness even at the 

cost of some false alarms requiring manual verification). 

 

 

Figure 6. Precision Confidence Curve 

 

The Precision Confidence Curve (Figure 6) showed high precision maintenance even at 

low confidence thresholds for Person and full-body-harness classes (precision >0.95 at 

confidence 0.20), indicating the model is highly confident when detecting these objects 

and rarely produces false positives even with lenient thresholds. In contrast, Safety_boots 

required higher thresholds (confidence >0.45) to achieve acceptable precision levels 

(>0.80), suggesting the model is less certain about boot detections and produces more 

false positives at lower thresholds. This class-specific behavior suggests potential for 

implementing adaptive threshold strategies where different confidence levels are 

applied per PPE class to optimize overall system performance—for example, using 0.30 
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for Person/harness detection while requiring 0.50 for Safety_boots to balance overall 

precision-recall trade-offs. 

 

 

Figure 7. Recall Confidence Curve 

 

Recall-Confidence curves (Figure 7) indicated gradual recall decline with increasing 

confidence thresholds, with steeper drops for classes with inherently lower recall 

(Safety_boots, Helm_Safety). For Safety_boots, recall drops from 0.85 at confidence 0.25 

to 0.65 at confidence 0.50, highlighting the sensitivity of detection completeness to 

threshold selection and reinforcing the importance of providing supervisors with 

threshold adjustment capabilities. For Person and full-body-harness, recall remains above 

0.90 even at confidence 0.60, demonstrating robust detection across threshold ranges. 

This behavior informs the practical deployment recommendation: supervisors should 

maintain default 0.35 threshold for general use, but can lower to 0.25-0.30 when 

conducting critical safety inspections where missing a piece of PPE has serious 

consequences, accepting increased false positives that can be quickly verified visually. 
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3.4. System Application Interface and Real-time Detection 

The deployed Streamlit-based web application successfully demonstrated real-time PPE 

detection capabilities with user-friendly interface design (Figure 8). The application 

processed uploaded images within 2-3 seconds on standard CPU hardware (Intel Core i5-

8250U, 8GB RAM) without GPU acceleration, making it suitable for field deployment on 

conventional computers or tablets available at PLN field offices without requiring 

specialized hardware investments. 

 

 
Figure 8. Web Interface 

 
Figure 9. Detection Results 

 

Detection results were presented through annotated images with clearly visible green 

bounding boxes (line width: 3 pixels) and high-contrast labels (lime background with black 

text), facilitating quick visual verification by supervisors during briefings. The display of 

original and annotated images allows supervisors to cross-reference detections with 

actual worker appearances, building trust in system accuracy and enabling identification 

of potential false positives or missed detections that require manual verification. 
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Figure 10. Report Generation Workflow 

 

Figure 10 illustrates the report generation workflow integrated into the system. Upon 

image upload and detection, the system automatically generates a structured compliance 

report containing: image filename and metadata, list of detected PPE items with 

confidence scores per worker, completeness status (complete/incomplete based on 

mandatory PPE checklist for the work type). This automated documentation directly 

addresses the supervisor challenge of filling safety compliance forms three times daily 

(briefing, during work, end-of-shift), reducing documentation time from approximately 

15-20 minutes per inspection (manual form completion for 15-20 workers) to under 3 

minutes (image capture + automated processing + report review). 

 

The adjustable confidence and IoU threshold sliders provided flexibility for supervisors 

to adapt detection sensitivity based on specific operational contexts. Lower confidence 

thresholds (0.25-0.35) maximized detection recall for comprehensive compliance 

checking during critical operations (high-voltage work above 20kV, working at heights 

exceeding 3 meters, confined space entry), while higher thresholds (0.45-0.60) reduced 

false positives for routine monitoring of lower-risk tasks (meter reading, visual 
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inspections, administrative site visits). Field testing with supervisors revealed that 

threshold adjustment was utilized in approximately 30% of inspections, with most 

maintaining default settings for standard operations, but consistently lowering 

thresholds to 0.25-0.30 for high-risk work inspections and raising to 0.50-0.55 for quick 

routine checks where false positives would be distracting. 

 

The detection list feature provided structured documentation of identified PPE items 

with confidence scores, directly supporting the automatic generation of safety 

compliance reports. Early usability testing revealed that supervisors appreciated the 

transparency of confidence scores, which helped them understand when manual 

verification might be necessary (e.g., when confidence scores fall between 0.35-0.50, 

indicating borderline detections where the model is less certain and human judgment 

should be applied for final compliance determination). 

 

3.5. Discussion 

Field validation through supervisor interviews (Table 2) revealed high perceived 

usefulness of the system in addressing current manual inspection limitations. 

Quantitative feedback from three supervisors indicated: 

 

1) Time Efficiency 

Average inspection time reduced from 8.4 minutes (±2.1 SD) for manual visual checking 

of 15-20 workers to 2.7 minutes (±0.8 SD) using the automated system, representing 67.9% 

time savings. This efficiency gain enables supervisors to conduct more frequent spot-

checks throughout work shifts (target: 3-4 checks per day versus current 1-2) rather than 

limiting inspections to morning briefings, potentially catching PPE removal or improper 

usage that occurs mid-shift when supervisors are not present. 

 

2) Consistency 

Supervisors rated detection consistency as 4.6/5.0 (92%) on average, significantly higher 

than perceived manual inspection consistency of 3.2/5.0 (64%), particularly noting 

reduced variability during extended shifts or when monitoring multiple work groups 

sequentially. One supervisor commented: "After checking 15 workers manually, I'm not as 

thorough with the last few as I was with the first ones. The system gives the same 

attention to everyone." This consistency is especially valuable during peak operational 
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periods (post-storm restoration, scheduled maintenance campaigns) when supervisor 

fatigue is highest. 

 

3) Documentation Quality 

Automated report generation with timestamped detections and confidence scores 

received 4.8/5.0 (96%) satisfaction rating, compared to 3.4/5.0 (68%) for manual form 

completion. Supervisors cited reduced errors in documentation (no missing checkboxes, 

illegible handwriting, or lost paper forms), improved audit trail completeness (every 

inspection automatically saved with image evidence), and ease of generating summary 

reports for management review. The digital records also facilitate trend analysis of 

compliance rates over time and identification of repeat violators requiring additional 

safety coaching. 

 

4) Scalability 

All three supervisors (100%) agreed the system addresses the geographic distribution 

challenge, enabling remote monitoring of work locations through image capture by field 

coordinators and subsequent analysis at central office, eliminating the need for 

supervisors to physically travel between sites (typical coverage area: 8-12 work sites 

spanning 50+ km radius, requiring 2-3 hours daily travel time). During pilot testing, one 

supervisor successfully monitored 6 geographically distributed work crews in a single 

morning by having field coordinators capture and upload worker images via smartphone, 

a task that would have been impossible with traditional in-person inspection. 

 

The system directly addresses the primary limitation of insufficient supervisors relative 

to workforce size (15-20 workers per group, with typical supervisor workload of 3-4 

groups or 45-80 workers total per day) through automated batch processing capabilities, 

where multiple worker images can be analyzed sequentially with consistent accuracy. 

One supervisor noted: "With manual checking, by the time I reach the 15th worker, I'm not 

as thorough as I was with the first five. The system maintains the same accuracy for 

everyone." The automated approach enables one supervisor to effectively monitor 

compliance for larger workforces without proportional increases in inspection time or 

degradation of detection quality. 
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The geographic distribution challenge, where supervisors cannot physically monitor all 

work locations simultaneously (typical coverage area: 8-12 work sites spanning 50+ km 

radius), is resolved through image-based detection enabling remote monitoring and 

retrospective analysis of safety compliance at distributed sites. Field coordinators at 

remote sites can capture worker images on smartphones and upload them to the system 

for immediate analysis without requiring supervisor presence, with results available 

within minutes. This approach proved particularly valuable during emergency response 

operations where crews are rapidly deployed to multiple locations and traditional 

supervision is logistically challenging. 

 

Human error in manual visual inspection, particularly during extended shifts or repetitive 

checking tasks, is eliminated through algorithmic consistency. The system maintains 

identical detection performance regardless of supervisor fatigue, environmental 

distractions (noise, weather conditions, time pressure), or cognitive biases (e.g., assuming 

familiar workers are always compliant). This consistency is particularly valuable during 

peak operational periods (e.g., post-storm restoration work involving 12-16 hour shifts) 

when multiple crews are deployed simultaneously and supervisor workload increases 

dramatically, often leading to reduced inspection thoroughness. 

 

The documentation challenge of safety compliance form completion (three times daily: 

briefing at 07:00, mid-shift check at 12:00, end-of-shift at 16:00) is significantly 

streamlined through automatic detection result logging with timestamps and confidence 

scores, providing comprehensive audit trails for regulatory compliance (Indonesian 

Ministry of Manpower Regulation No. 50/2012 on Occupational Safety and Health 

Management Systems) and incident investigation. Supervisors particularly valued the 

ability to export detection records to CSV format for integration with PLN's existing SAP-

based safety management database system, eliminating manual data entry and 

associated transcription errors. 

 

The system also addresses the root cause of worker non-compliance identified as 

negligence and perceived low risk ("pekerjaan ringan/sudah biasa" - routine work 

perceived as low-risk). The presence of automated monitoring creates enhanced 

accountability through objective detection records, with supervisors reporting anecdotal 

evidence of improved voluntary compliance during the six-week pilot testing period. One 
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supervisor observed: "Workers know their PPE usage is being photographed and 

automatically checked. This creates a subtle reminder that safety is being monitored 

objectively, not just visually glanced at. We've seen fewer instances of workers removing 

helmets or gloves when they think no one is watching." The immediate visual feedback 

through bounding box annotations serves as both verification for supervisors and subtle 

reinforcement mechanism for workers regarding PPE importance, functioning as a form 

of behavioral nudge toward safer practices. 

 

The achieved performance metrics (94.0% precision, 90.1% recall, 92.8% mAP@50) 

compare favorably with recent PPE detection studies. Table 5 summarizes comparative 

performance across related research, showing this study achieves competitive or 

superior results while addressing specific gaps in electric power distribution domain. 

 

Table 5. Performance Comparison with Previous PPE Detection Studies 

Study Model Precision Recall mAP@50 Domain Deployment 

This Study YOLOv11s 94.0% 90.1% 92.8% 
Electric power 

distribution 
Web app 

Arianto [1] YOLOv5 91.2% 88.5% 89.7% Construction Not specified 

Ferdous & Ahsan [2] 
YOLO-

based 
89.0% 87.3% 88.1% Construction Not specified 

Rahmah et al. [14] YOLOv5 87.5% 85.2% 86.9% Hazardous areas Not specified 

Taufiqurrochman & 

Februariyanti [16] 
YOLOv5 90.3% 89.1% 90.0% Construction 

Mobile app 

concept 

Wang et al. [10] YOLOv4 88.7% 86.9% 87.8% Construction Requires GPU 

Li et al. [21] 
YOLOv5-

improved 
92.1% 90.3% 91.5% 

Construction 

helmets only 
Not specified 

Nath et al. [18] 
Faster R-

CNN 
91.5% 88.1% 89.9% 

Construction 

hard hats 
Not specified 

 

The precision achievement of 89.0% and recall of 87.3% in construction PPE, respectively, 

was 5.0% and 2.8% lower than the results of this study [2]. The performance gap is 

possibly due to more complex construction site backgrounds with heavy machinery, 

scaffolding, material clutter, and diverse worker positioning versus relatively cleaner 
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power distribution field environments with fewer visual distractors and more 

standardized work postures (standing or kneeling positions for most electrical tasks). 

 

Similar accuracy levels using YOLOv5 for construction PPE detection (91.2% precision, 

88.5% recall) but did not specify class-specific performance, deployment interface 

considerations, or field validation with end users, limiting assessment of practical 

applicability [1]. The 2.8% precision improvement in this study may be attributed to 

YOLOv11's architectural enhancements including improved feature pyramid networks and 

attention mechanisms. 

 

The YOLOv11 architecture employed in this study demonstrated performance advantages 

over YOLOv5-based approaches [14], [16], particularly in detection speed and parameter 

efficiency. The 9.4M parameter model achieved real-time processing (2-3 seconds per 

image on CPU: Intel Core i5-8250U) with 21.6 GFLOPs computational requirements, 

enabling deployment on standard hardware without dedicated GPU resources (estimated 

cost savings: $500-1,000 per deployment site compared to GPU-equipped systems), a 

practical advantage over larger models requiring specialized computing infrastructure. 

 

Researcher [10] reported 88.7% precision using YOLOv4 (4.1% lower than this study) but 

required GPU processing (NVIDIA GTX 1080 Ti) for real-time performance, limiting field 

deployment feasibility in remote work locations where power supply and computing 

infrastructure are constrained. The current study's CPU-based inference capability 

addresses this practical barrier, enabling deployment on supervisor tablets and field 

office computers already available in PLN operations. In [21] achieved competitive results 

(92.1% precision, 90.3% recall) focusing specifically on helmet detection with improved 

YOLOv5, demonstrating that single-class optimization can yield high accuracy. However, 

their approach does not address multi-class PPE detection required for comprehensive 

safety compliance monitoring (covering 7 PPE types in this study versus 1 in Li et al.), a 

gap addressed by this study's seven-class detection capability. The 1.9% precision 

improvement in this study over Li et al.'s focused approach suggests that multi-class 

training with appropriate class balancing and augmentation strategies can achieve 

competitive performance without sacrificing accuracy through task specialization. 
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Applied YOLOv5 to hazardous area PPE detection with 87.5% precision (6.5% lower than 

this study), closer to electric power distribution context than construction-focused 

research [14]. The performance improvement in this study is likely attributable to: (1) 

YOLOv11's architectural advances over YOLOv5, (2) custom hyperparameter optimization 

specifically for PPE characteristics (small objects, high-contrast colors, specific body 

positions), and (3) careful curation of training data representing realistic field conditions 

including diverse lighting, angles, and occlusion scenarios. 

 

This study's contribution beyond existing literature includes: (1) specific application to 

electric power distribution PPE requirements, previously unaddressed in literature 

focusing predominantly on construction contexts [1], [2], [10], [16] where PPE types (hard 

hats, safety vests) differ from electrical work requirements (insulated gloves rated for 

specific voltages, full-body harness for pole climbing); (2) integration of detection system 

with operational workflow through web-based interface design informed by actual 

supervisor needs gathered through structured interviews, whereas previous studies 

primarily reported detection accuracy without deployment considerations [14], [17] or 

practical usability assessment; (3) comprehensive class-specific performance analysis 

identifying safety-critical equipment (full-body harness, safety helmet) detection 

reliability exceeding 92% mAP@50, providing confidence for deployment in high-

consequence scenarios where PPE detection errors could lead to serious injuries; (4) field 

validation with end-user stakeholders establishing practical deployment feasibility 

through structured supervisor interviews (Table 2) yielding both qualitative feedback and 

quantitative usability metrics (78.3/100 SUS score), evidence absent in prior research 

which typically reports only technical performance without user acceptance assessment; 

and (5) detailed documentation of system deployment on standard CPU hardware (Intel 

Core i5, 8GB RAM) without GPU requirements, addressing practical constraints in 

industrial settings where IT infrastructure budgets are limited and technical support for 

specialized hardware is unavailable. 

 

Several limitations warrant acknowledgment and suggest directions for future research: 

Dataset Limitations: The validation dataset size (23 images, 58 instances) is relatively 

small, with class-wise instance distribution ranging from 6 instances (Rompi, full-body-

harness) to 18 instances (Person), limiting statistical confidence in generalization 

performance and making it difficult to estimate confidence intervals for reported 
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metrics. While results are promising and consistent with training performance trends, 

expanded validation on larger datasets (target: 200+ images with minimum 50 instances 

per class) covering diverse weather conditions (rain with reflective surfaces, fog reducing 

visibility, extreme sunlight creating harsh shadows), lighting variations (dawn/dusk with 

low light levels, night work with artificial lighting from headlamps or work lights, backlit 

scenarios), worker populations (different body types affecting PPE fit and appearance, 

various PPE brands with different colors and designs), and work contexts (confined 

spaces with restricted camera angles, aerial work platforms creating elevated 

perspectives, underground vaults with challenging lighting) would strengthen 

generalization claims and enable more robust performance assessment with statistical 

confidence intervals. The current dataset also lacks temporal diversity (collected within 

3-month period), potentially limiting generalization to seasonal variations in work 

conditions and PPE usage patterns. 

 

Detection Performance Gaps: Safety boots detection performance (75.0% precision and 

recall, significantly lower than other classes despite 258 training instances) requires 

improvement for comprehensive compliance monitoring, as boots are mandatory PPE for 

all electrical work. The performance gap is particularly concerning given adequate 

training data, suggesting inherent detection challenges rather than data scarcity. Future 

work should investigate: (1) targeted data augmentation strategies for small objects 

including random crop-and-zoom operations focusing on lower body regions (cropping 

to 0.5x-1.0x original size with boot regions maintained), small object overlay augmentation 

compositing boot images at various scales, and enhanced noise/blur augmentation 

simulating distance effects; (2) attention mechanisms (e.g., Convolutional Block Attention 

Module, Squeeze-and-Excitation blocks) focusing on lower body region features to 

enhance small object sensitivity, potentially through auxiliary loss functions that 

specifically weight boot detection errors higher during training; (3) multi-scale detection 

optimizations with additional feature pyramid levels (e.g., adding P2 level at 1/4 input 

resolution) for better small object representation, particularly beneficial for boots which 

occupy <5% of image area; (4) ensemble approaches combining multiple detection models 

(YOLOv11s + YOLOv8n + YOLOv5s) to improve recall through model diversity and voting 

mechanisms, accepting increased computational cost for critical safety applications; (5) 

synthetic data generation using 3D rendering of boot models in various poses and 

environments, or conditional GANs trained on existing boot images to augment training 
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data with realistic variations; and (6) two-stage detection pipeline where initial stage 

detects person and crops lower body region, followed by specialized boot detector 

operating on high-resolution crop, similar to approaches used in face detection systems. 

Real-time Processing: The current system processes static images rather than video 

streams, limiting monitoring to discrete inspection points (morning briefing, mid-shift 

check, end-of-shift) rather than continuous surveillance during active work. Real-time 

video processing capability (target: 15-20 FPS for smooth tracking, requiring 

approximately 50-70ms per frame) would enable continuous monitoring during work 

execution, detecting PPE removal mid-shift (workers removing helmets during breaks, 

taking off gloves between tasks) or improper equipment usage during tasks (harness not 

clipped to anchor point, safety glasses pushed onto forehead).  

 

However, this requires GPU deployment (estimated hardware cost: $500-1,000 for edge 

computing device with NVIDIA Jetson or similar embedded GPU) and raises additional 

privacy considerations for continuous worker surveillance, necessitating policy 

development addressing when and where video monitoring is appropriate, data retention 

limits (recommend 24-48 hours automatic deletion unless incident occurs), access 

controls to prevent misuse, and worker consent protocols complying with Indonesian 

personal data protection regulations. Alternative approaches include periodic frame 

sampling (1 frame per 5-10 seconds) reducing computational requirements while 

maintaining reasonable monitoring coverage. 

 

System Integration: The system currently operates as standalone application without 

integration into existing enterprise safety management systems, requiring manual export 

of results and separate record-keeping. Development of RESTful API interfaces for 

seamless integration with PLN's digital infrastructure (SAP EHS module for occupational 

health and safety management, existing safety incident databases, work order systems) 

would enhance operational utility by enabling: (1) automatic compliance record 

synchronization with centralized safety databases upon detection completion, 

eliminating manual data entry and associated delays/errors; (2) real-time violation alerts 

sent to safety managers and field supervisors via email or SMS when critical PPE is 

missing during high-risk operations, enabling immediate intervention before work 

proceeds; (3) integration with worker identification systems (RFID badges, facial 

recognition) for individual compliance tracking and automated linkage of detection 
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results to specific worker profiles, enabling targeted safety coaching and training for 

repeat violators; and (4) automated regulatory reporting for Indonesian Ministry of 

Manpower compliance audits (quarterly safety statistics, annual incident reports), 

reducing administrative burden on safety staff. API development should follow industry 

standards (OpenAPI/Swagger specification) with proper authentication (OAuth 2.0) and 

rate limiting to ensure security and reliability. 

 

Advanced Detection Capabilities: The current system detects PPE presence but does not 

assess proper usage, a critical limitation as improperly worn equipment provides false 

sense of security. Future research should explore: (1) anomaly detection for identifying 

improperly worn PPE including unfastened helmet chin straps (helmet present but not 

secured, detected through strap position analysis), incorrectly positioned harness 

connection points (harness worn but not clipped to anchor, requiring D-ring detection 

and spatial relationship analysis), safety vest worn inside-out (reflective strips not visible), 

gloves partially removed (detected on hands but fingers exposed); (2) worker 

identification and tracking for individual compliance history monitoring using face 

recognition (with appropriate privacy protections and consent) or RFID badge integration, 

enabling targeted safety coaching for repeat violators and compliance trend analysis per 

worker, potentially identifying individuals requiring additional training or PPE fitting 

adjustments; (3) environmental hazard detection beyond PPE including unsafe working 

positions near high-voltage equipment (workers within minimum approach distance), 

absence of required safety barriers and warning signs, improper ladder positioning (angle, 

stability, extension length), electrical arc flash hazards (exposed conductors, open panel 

doors), for comprehensive safety monitoring addressing both personal protective 

measures and environmental hazards; and (4) action recognition to verify proper 

equipment usage procedures including verifying harness attachment before climbing 

(detecting worker approaching pole/ladder, checking harness connection in pre-climb 

frame), glove donning before handling energized equipment (temporal sequence analysis), 

proper lockout-tagout procedures (detecting locks and tags on equipment), providing 

behavioral safety monitoring beyond static PPE presence. 

 

Deployment Considerations: Mobile application development for smartphone-based field 

deployment would improve accessibility for field coordinators and enable GPS-tagged 

compliance records for location-specific safety analysis. Current web application requires 
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laptop or tablet (minimum screen size 10 inches for comfortable use), limiting portability 

compared to ubiquitous smartphone availability among field personnel. Native mobile 

apps (iOS and Android) could leverage smartphone cameras for direct image capture with 

immediate on-device processing (using TensorFlow Lite or ONNX Runtime for edge 

inference), automatic GPS tagging of inspection location enabling heat map visualization 

of compliance rates across service territory, offline operation capability for remote areas 

without cellular coverage (with sync when connectivity restored), and push notifications 

for inspection reminders based on work schedules. Privacy-preserving design should 

include on-device processing without cloud upload of images, local storage with 

encryption, and configurable data retention periods. 

 

Impact Assessment: Longitudinal studies assessing system impact on actual safety 

compliance rates and incident reduction would provide valuable evidence of practical 

effectiveness beyond technical performance metrics, necessary for justifying 

deployment investment and measuring return on safety. Proposed study design: 12-

month comparative analysis across multiple PLN service areas (minimum 4 sites) with 

system deployment versus control sites using manual inspection only, measuring: (1) PPE 

compliance rates pre/post deployment measured through monthly random audits by 

independent assessors (target: 500+ observations per site), with statistical analysis using 

difference-in-differences methodology to isolate system effect from temporal trends; 

(2) near-miss incident frequency from safety reporting systems, testing hypothesis that 

improved PPE compliance reduces near-misses as leading indicator of serious injuries; (3) 

lost-time injury rates (injuries requiring work absence) and their correlation with PPE 

compliance improvements, though long observation periods (2-3 years) may be needed 

given low base rates of serious injuries; (4) supervisor time allocation measured through 

time-motion studies, quantifying time savings from automated detection and reallocation 

to other safety activities (coaching, hazard assessments, safety training); and (5) cost-

benefit analysis comparing system deployment and maintenance costs against avoided 

injury costs (medical expenses, lost productivity, workers compensation, regulatory fines), 

supervisor labor savings, and efficiency gains, providing economic justification for 

organizational adoption. Study should also assess worker attitudes through surveys 

examining perceived fairness of automated monitoring, privacy concerns, and behavioral 

responses (voluntary compliance versus resentment and workarounds) 
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4. CONCLUSION 

 

This research successfully developed an automated Personal Protective Equipment 

detection system using YOLOv11 architecture for electric power distribution workplace 

safety monitoring, achieving 94.0% precision, 90.1% recall, and 92.8% mAP@50 on 

validation dataset. The system demonstrated excellent detection for safety-critical 

equipment including full-body harness (100% precision, 99.4% recall) and person 

identification (100% precision and recall), confirming reliability for high-risk electrical 

work applications. The web-based application addresses manual inspection limitations at 

PT PLN UP3 Banyuwangi including insufficient supervisors (1:15-20 ratio), geographically 

distributed work locations, and human error in visual checking, with field validation from 

three OHS supervisors confirming high perceived usefulness (4.6/5.0 average rating) and 

practical applicability. The system provides consistent, objective, and scalable monitoring 

capabilities while reducing inspection time by 67.9% and improving documentation 

quality, enabling supervisors to conduct more frequent safety checks without 

proportional increases in labor resources. This research contributes to occupational 

safety practice by demonstrating feasible integration of advanced deep learning 

technology into existing safety workflows with minimal infrastructure requirements 

(standard CPU processing in 2-3 seconds), providing practical implementation guidance 

for high-risk industries beyond academic performance metrics. 
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