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Abstract. This study examines how quantum computing (QC) is 

being applied to molecular design and drug discovery. This study 

aims to investigates how QC surpasses classical limitations, 

focusing on empirical performance in precision, accuracy, and 

optimisation tasks. Study design use PRISMA 2009 guidelines, 15 

empirical studies (2020-2025) were included. Data were extracted 

on the drug-discovery stage, the algorithm used, evaluation metrics, 

benefits, and limitations. The findings show QC outperforms 

classical methods particularly through hybrid quantum–classical 

models. Thirteen studies reported superior gains, including AUC–

ROC values of 0.80–0.95, +30% improvement in drug-likeness (QED), 

+6% increase in prediction accuracy, and up to 99% accuracy in 

drug–target interaction tasks. However, noisy intermediate-scale 

quantum (NISQ) hardware limitations and poor scalability limit real-

world deployment, due to noise, and limited qubit counts. 

Consequently, current performance results are largely simulation-

based rather than hardware-validated. In contrast to prior 

algorithm-centric reviews, this study provides a consolidated 

empirical synthesis and proposes a hybrid quantum–classical 

pipeline that maps high-performing algorithms across the drug 

discovery workflow under NISQ-era constraints. These findings 

inform pharmaceutical research and development by identifying 

realistic adoption pathways and the boundaries of current 

technological readiness. 
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1. INTRODUCTION 
 

Drug discovery is an important process for developing therapeutic agents that address 

both long-standing and emerging health issues [1]. Despite significant advances such as 

artificial intelligence (A.I.), the drug discovery pipeline is characterised by developmental 

timelines, high costs and the exponential scaling of molecular interactions [2], [3], [4]. 

Classical methods such as molecular mechanics (MM) and molecular docking (MD) have 

accelerated the drug process, but they heavily rely on approximations that fail to capture 

the quantum nature of molecules[5], [6]. This has resulted in diseases being underserved 

due to poor safety profile predictions and the wastage of therapeutic candidates due to 

ineffectiveness [2], [7], [8], [9].  
 

Quantum computing (QC) utilises quantum bits (qubits), superposition, and entanglement 

to address classically intractable molecular problems [2], [10], [11]. These principles enable 

more accurate representations of molecular states, supporting property prediction, 

constrained optimisation, molecular screening, and the generation of novel compounds 

[12], [13]. Compared to classical approaches, QC can improve computational efficiency, 

reduce experimental effort, and offer scalability advantages for high-dimensional 

molecular data [7], [9]–[12]. In practical drug discovery pipelines, such improvements are 

particularly valuable at early stages, where molecular screening, property prediction, 

drug–target interaction modelling, and toxicity assessment determine which compounds 

advance to costly laboratory validation and clinical trials [10]. Early-stage computational 

accuracy is critical, as prediction errors propagate through the pipeline: false positives 

waste synthesis resources. In contrast, false negatives discard viable therapeutics [2], [7]. 

Limitations of classical methods in capturing quantum-mechanical effects further 

contribute to late-stage failures [5], [6], [11], making improved early-stage precision 

essential for reducing development costs and timelines. 
 

The objective of this review is to systematically analyse and synthesise empirical 

evidence on the application of QC in drug discovery, focusing on where and how QC and 

hybrid quantum–classical approaches provide measurable advantages over classical 

methods. Specifically, this study maps the stages of the drug discovery pipeline into a 

conceptual framework and examines how current technological constraints shape 

practical deployment. Recent progress in QC-enabled drug discovery has demonstrated 
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promising performance over classical approaches [12], [13]. However, practical adoption 

remains constrained by the NISQ-era environment [14] , which is characterised by limited 

qubit counts, hardware noise and errors. These restrict the performance of fully quantum 

pipelines, making hybrid quantum–classical workflows the most practical near-term 

solution. Table 1 summarises the key differences between classical, quantum and hybrid 

paradigms to contextualise the reasons for integrating quantum computing into drug-

discovery processes. 

 
Table 1. Classical vs Quantum vs Hybrid frameworks 

Dimension 
Classical 

Computing 
Quantum Computing 

Hybrid Quantum-

Classical 

Computational 

principle 
Deterministic logic 

Quantum 

superposition and 

entanglement 

Parallel integration of 

classical pre-processing 

and quantum kernels 

Example Algorithms SVM, CNN 
VQE, QAOA, Quantum 

GAN 
Hybrid VQE-DNN, 

Quantum CNN 

Strengths 
Mature, scalable, 

interpretable 
Exponential state-

space exploration 

Balance between 

accuracy and hardware 

feasibility 

Limitations 
High time 

complexity 
Hardware noise, NISQ 

instability 

Integration and 

interoperability 

complexity 

 

Previous reviews have examined quantum computing in molecular design and drug 

discovery. Notable works include [4], [15], [16], which explored molecular simulation, QML-

based molecule generation, and property prediction, respectively, each reporting 

improvements in modelling performance. However, these studies were highly task-

specific, lacked comparative evaluation against classical baselines and did not analyse 

scalability or end-to-end pipeline applicability. Moreover, reviews such as [2], [17] outlined 

the theoretical foundations and accuracy gains of QC, but similarly noted that NISQ-era 

noise, limited hardware stability and the need for error correction continue to restrict 

practical real-world applications. 
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Although several reviews have explored the potential of quantum computing in drug 

discovery, most remain largely theoretical, algorithm-centric, focused on isolated tasks, 

with limited systematic comparison between hybrid quantum–classical and classical 

methods. Collectively, existing literature is fragmented and lacks an empirical synthesis 

across the full drug discovery workflow. Moreover, no comprehensive framework 

currently demonstrates how to integrate quantum algorithms across the major stages of 

the drug-discovery pipeline. While QC-enabled workflows promise improved molecular 

modelling and shorter development timelines, there remains no systematic empirical 

review identifying where QC is practically applied and how its performance compares 

with classical approaches under NISQ constraints. This review directly addresses this gap 

through a consolidated empirical synthesis and a stage-mapped hybrid quantum–

classical pipeline. 
 

The urgent need for such a consolidated empirical synthesis arises from the rapid growth 

of experimental quantum studies in molecular modelling and drug discovery. As hybrid 

quantum–classical approaches increasingly report performance gains, the absence of a 

unified empirical framework makes it difficult to distinguish practical capability from 

theoretical promise. Without structured integration guidance, researchers and industry 

practitioners lack clear direction on realistic deployment points, expected benefits, and 

current limitations of quantum methods. A consolidated synthesis is therefore essential 

to support informed methodological selection, system design, and long-term investment 

decisions in quantum-driven pharmaceutical research. 
 

This review addresses these gaps by systematically mapping and critically analysing 

empirical studies between 2020 and 2025. It provides a quantitative and qualitative 

synthesis of comparative insights between quantum and classical models and proposes 

a hybrid quantum–classical conceptual framework that demonstrates its utilisation 

across the drug discovery pipeline. This research will answer the following questions: 
1) RQ1. At which stages of the drug discovery pipeline is quantum computing being 

applied? 
2) RQ2. How are quantum computing algorithms utilised within the drug discovery 

processes? 
3) RQ3. How does quantum computing enhance the identification of novel drug 

candidates in molecular discovery? 
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4) RQ4. How do current technological and technical limitations influence the 

application of quantum computing in drug discovery? 
 

The rest of the paper is structured with the following order of topics: 2.  Methodology 

used in this systematic review, 3. Results and Discussion, 4. Conclusion. 
 

2. METHODS 
 

The PRISMA (2009) framework guided the literature analysis of this study through the 

stages of Identification, Screening, Eligibility, and Inclusion, which were used to determine, 

select, prioritize, analyze and summarize all relevant published findings [18], [19]. 
 

2.1. Search Strategy 
This review was conducted in the following databases: IEEE Xplore, PubMed, ACM Digital 

Library and Springer Nature Link. The core Boolean search string is shown as follow.  

 
(("quantum computing*") AND ("drug discovery" OR "molecular design*") AND 

("pharmaceutical" OR "biomedicine*" OR "healthcare")) 
 

2.2. Inclusion and Exclusion Criteria 
Table 2 shows the inclusion and exclusion criteria used in this study. 

 
Table 2. Inclusion and Exclusion criteria 

Criterion Inclusion Exclusion 

Study Type 
Peer-reviewed empirical 

studies reporting experimental 

or simulation-based evidence. 

Theoretical, conceptual, 

perspective, opinion papers, or 

reviews without empirical 

evaluation. 

Quantum 

Computing 

Relevance and 

Application Scope 

Studies that apply quantum 

computing or hybrid quantum–

classical methods to any 

computational task within the 

drug discovery pipeline. 

Generic quantum computing 

studies with no drug-discovery 

relevance. 

Application Papers situated in Papers from domains 
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Criterion Inclusion Exclusion 

Domain pharmaceutical science, 

biomedicine, healthcare-related 

molecular modelling, or 

computational drug discovery. 

unrelated to biomedical or 

pharmaceutical applications 

Timeframe 2020–2025 Pre-2020 

Language English Non-English 

 

To maintain methodological rigour, grey literature such as preprints, theses, and non-

peer-reviewed reports was intentionally excluded. Only peer-reviewed empirical studies 

were included, as the review aimed to evaluate practical algorithm performance, 

comparisons with classical baselines, and NISQ-related constraints, which cannot be 

reliably assessed using purely theoretical or conceptual works.  
 
2.3. Screening 
The initial search on November 4 yielded a total of 1291 papers, distributed as follows: 35 

from IEEE Explorer, 122 from PubMed, 1040 from SpringerLink, and 94 from the ACM 

Digital Library. 2 duplicate sets were identified and merged, yielding 2 unique papers. One 

thousand two hundred twenty-nine papers were excluded during title and abstract 

screening because they focused on classical or quantum methods with no contribution 

to the drug discovery pipeline. This resulted in 60 papers qualifying for the full-text 

screening process. Two reviewers independently screened titles and abstracts, followed 

by full-text assessment, following the predefined inclusion and exclusion criteria. 

Disagreements during the screening process were resolved through structured 

discussion until consensus was reached. A Cohen’s K = 0.87 which indicates substantial 

agreement was calculated using the standard formula as shown in Equation 1. 

 

𝜅 = !!"!"
#"!"

     (1) 

 

where 𝑃$is the proportion of observed agreement, and 𝑃%represents the expected chance 

agreement. 
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2.4. Eligibility 
Sixty papers were eligible for the full-text screening process, and 45 were removed 

because they did not involve biological concepts such as molecules or biological targets, 

or because they were purely theoretical algorithm development. As a result, a total of 15 

papers qualified for the systematic analysis. 
 

2.5. Inclusion 
The inclusion stage of the review shows how studies were identified, screened, and 

selected. After applying the predefined inclusion and exclusion criteria, 15 studies were 

found to be suitable for inclusion in the final review. These selected studies provide the 

foundation for the analysis and discussion that follow. A detailed PRISMA flow diagram 

is shown in Figure 1. 

 

Figure 1. PRISMA diagram to show the screening process 
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2.6. Quality Appraisal 
The quality of the selected studies was evaluated using the Critical Appraisal Skills 

Programme (CASP) Checklist (2018). The CASP tool is a set of appraisal checklists 

developed to evaluate the methodological quality, reliability and applicability of research 

studies [28]. The checklists were altered to suit the practical nature of the research and 

adapted structured judgments by dividing the appraisal into five major domains, as shown 

in Table 3. 
Table 3. CASP Checklist domains and scoring 

Checklist Domain Description Scoring range 

Method clarity Is the method or algorithm adequately 

described? 
0 - 2 points 

Research objectives clarity Explicit definition of study goals. 0 – 2 points 
Drug discovery stage 

coverage 
Relevance to one or more drug discovery 

pipeline stages. 
0 – 2 points 

Outcomes and limitations 

transparency 
Were outcomes and limitations clearly 

presented? 
0 – 2 points 

Reproducibility Transparency of data collection, 

parameters set and algorithms used. 
0 – 2 points 

 

The scoring system was: 
2 points – fully addressed with high quality 
1 point – partially addressed or moderate quality. 
0 points – not addressed or insufficient quality.  
 

Table 4 presents the quality assessment of the studies included in this study. 

 
Table 4. CASP Quality Assessment of included studies 

Author Method Clarity 

Research 

Objectives 

Clarity 

Drug-Discovery 

Stage Coverage 

Outcomes & 

Limitations 

Transparency 

Reproducibility Score 

[20] 2 2 1 2 2 9 

[21] 1 1 2 2 1 7 

[22] 2 2 2 2 1 9 

[23] 2 2 2 2 2 10 
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Author Method Clarity 

Research 

Objectives 

Clarity 

Drug-Discovery 

Stage Coverage 

Outcomes & 

Limitations 

Transparency 

Reproducibility Score 

[24] 2 2 1 2 2 9 

[25] 2 2 1 2 2 9 

[26] 2 2 2 2 2 10 

[27] 2 2 2 2 2 10 

[28] 2 2 1 2 2 9 

[29] 2 2 1 2 1 8 

[30] 2 2 1 2 2 9 

[31] 2 2 2 2 2 10 

[32] 2 2 1 2 2 9 

[33] 2 2 1 2 2 9 

[34] 2 2 1 1 1 7 

 

Thirteen papers scored above or equal to 8/10 (high quality), and two scored 7/10 

(moderate quality). All included studies demonstrated sufficient contextual relevance to 

justify inclusion. Low-scoring studies were not excluded due to the limited volume of 

empirical quantum computing research. Instead, they were retained to ensure thematic 

completeness and were interpreted cautiously within the synthesis, rather than being 

weighted equally in algorithm performance comparisons. 
 

2.7. Data Extraction 
The screening and data extraction process was conducted using Mendeley Reference 

Manager (Version 2.139.0) for reference management, deduplication, and inclusion-

exclusion tracking; RIS and BibTeX formats for standardised citation tracking and 

exporting and PRISMA (2009) for data logging. No AI-assisted screening tools were used. 

All screening, data extraction and appraisal activities were performed manually by the 

two reviewers to ensure methodological transparency. 
 

Extracted variables included author, publication year, country, quantum algorithm, 

quantum algorithm type, drug discovery stage, benefits, benchmark dataset, and reported 

limitations. Table 5 shows articles included in the study and their extracted 

characteristics. 
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Table 5. Characteristics of included studies 

Coun-

try 

Drug Discov-

ery Stage 

Algorithm 

Used 
Type Benefits 

Evaluation  

Metrics 
Challenges 

[20] 

India 

Drug-target 

interaction 
QSVR 

Hybrid 

quan-

tum-

classi-

cal 

94-99% accuracy 

gain in DTI predic-

tion 

The DAVIS da-

taset achieved 

94.21% accuracy, 

and the KIBA da-

taset achieved 

99.99% 

- NISQ noise. 

- Scalability of 

feature mapping 

[21] 

India 

Phytopharma 

modelling. 

-electronic 

structure pre-

diction, 

-network 

pharmacology, 

-bioactivity 

modelling 

Hybrid simu-

lation 

Hybrid 

quan-

tum-

classi-

cal 

Improved complex-

interaction model-

ling 

- 
- Immature NISQ 

hardware 

[22] 

USA 

- Protein fold-

ing 

Grover’s algo-

rithm 

Pure 

quan-

tum 

accelerated and 

optimised 

search in protein 

folding and drug 

discovery model-

ling 

Classical exhaus-

tive search 

-NISQ noise 

- High qubit 

count required 

for realistic pro-

teins. 

[23] 

China 

-Simulation of 

ground state 

energy. 

-Pro drug acti-

vation. 

VQE 

Hybrid 

quan-

tum-

classi-

cal 

- Higher precision 

and feasibility of 

quantum-classical 

integration 

- Classical MM 

- NISQ Hardware. 

- Limited scalabil-

ity to a full drug 

discovery pipe-

line. 

[24] 

China 

- Molecular 

conformation 

(creating 3D 

structures of 

small mole-

cules). 

- Optimisation 

-Quantum 

Approximate 

Optimisation 

Algorithm 

(QAOA), 

- Quantum-

inspired Sim-

ulated Bifur-

cation Algo-

rithm (SB) 

Hybrid 

quan-

tum-

classi-

cal 

- Time-to-target 

factor reduced 

(faster optimisa-

tion) 

- QM9 dataset 

- Quantum hard-

ware maturity. 

- Encoding/ rep-

resenting molec-

ular structures 

complexity 

- Experiment is 

simulated, not 

run on quantum 

hardware. 

[25] 

India 

-molecular in-

teractions 

- Identification 

of drug candi-

dates. 

Quantum 

Support Vec-

tor Machines 

(QSVM) 

- Quantum 

Neural Net-

works (QNN) 

Hybrid 

quan-

tum-

classi-

cal 

improved accuracy 

- Classical SVM 

and NN algo-

rithms 

- NISQ Hardware. 

- Noise and error 

rates 

-Scalability issues 
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Coun-

try 

Drug Discov-

ery Stage 

Algorithm 

Used 
Type Benefits 

Evaluation  

Metrics 
Challenges 

[26] 

China 

- De novo mo-

lecular gener-

ation. 

QGAN 

Hybrid 

quan-

tum-

classi-

cal 

- Generated novel 

molecular struc-

tures with im-

proved drug-like-

ness scores. 

- Classical GAN 

- QED score 

- NISQ Hardware 

- Limited molecu-

lar complexity 

[27] 

USA 

- Binding af-

finity predic-

tion. 

 

Hybrid QML 

Hybrid 

quan-

tum-

classi-

cal 

- increased speed 

and accuracy 

- +6% increased 

prediction 

- PBDbind dataset 

 

- NISQ hardware 

-quantum hard-

ware error and 

noise 

[28] 

Swit-

zer-

land 

- Small Mole-

cule genera-

tion 

- QGAN 

Hybrid 

quan-

tum-

classi-

cal 

+30% in druglike-

ness score 

-QED score +30% 

vs classical GAN 

- QM9 datasets - 

- PC9 dataset 

- QED 

- Noisy quantum 

devices 

- simulation not 

validated on 

quantum hard-

ware 

-smaller training 

datasets with a 

small range of 

chemical com-

pounds and mo-

lecular structures 

[29] 

India 

- ADME-Tox 

prediction 
- QSVC 

Hybrid 

quan-

tum-

classi-

cal 

- better classifica-

tion results with an 

AUC ROC of 0.80-

0.95 across various 

ADME-Tox datasets 

- HIA datasets- 

CYP2D6 datasets 

- DILI dataset 

-  Immature 

quantum hard-

ware 

-immature quan-

tum software. 

And algorithms. 

[30] 

India 

- Molecular 

energy esti-

mation 

- Protein-lig-

and binding 

VQE 

Hybrid 

quan-

tum-

classi-

cal 

-  greater molecu-

lar energy estima-

tion accuracy 

DFT/HF 

-NISQ noise 

-Molecules simu-

lated were from a 

small test set 

[31] 

USA 

-Molecular 

generation. 

- Property 

prediction. 

QAOA 

Hybrid 

quan-

tum-

classi-

cal 

- Improved predic-

tive performance. 

- Efficient genera-

tion of novel mole-

cules that accu-

rately fill target 

constraints. 

- Zinc dataset 

- NISQ hardware 

- limited qubit 

counts. 

- Scaling to larger 

drug-like mole-

cules is difficult. 

[32] 

India 

- binding en-

ergy simula-

tion 

- VQE 

- QAOA 

Hybrid 

quan-

tum-

- Accurate folding 

and structural 

analysis 

- Hartree-Fork - NISQ hardware 
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Coun-

try 

Drug Discov-

ery Stage 

Algorithm 

Used 
Type Benefits 

Evaluation  

Metrics 
Challenges 

- Structure 

analysis 

classi-

cal 

[33] 

USA 

- screening 

- molecular 

generation 

- QGAN 

- QCNN 

Hybrid 

quan-

tum-

classi-

cal 

- Quantum 

GAN/CNN outper-

formed classical 

GAN/CNN in terms 

of accuracy. 

- No advantage 

over VAE 

- Classical 

GAN/CNN 

- VAE 

- Designing qubit 

qubit-efficient 

circuit architec-

ture for data en-

coding 

-NISQ noise 

 

[34] 

UK 

- Electronic 

structure cal-

culation. 

 

VQE 

Hybrid 

quan-

tum-

classi-

cal 

- higher accuracy 

with fewer compu-

tational resources 

- 

-NISQ hardware 

-Scaling con-

straints 

 

3. RESULTS AND DISCUSSION 
 

3.1. Publication Trends 

Studies on quantum computing in molecular design and drug discovery have shown 

steady interest, with the peak period from 2023 to 2024 accounting for 9 of the 15 

studies. The year 2024 had the most publications, with five papers accounting for 33% of 

the total, followed by 2023, with four publications accounting for 27%.  Although the 

upward trajectory indicates growing interest in quantum-enabled molecular design, a 

slight decline in publications was observed in 2025. Figure 2 shows the number of 

publications per year. 

Figure 2. Publication Trends 
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3.2. Geographic Distribution 
At the country level, India contributed the most publications (6), followed by the United 

States of America (4), China (3), and the United Kingdom and Switzerland, each with 1 

paper. When grouped by continent, Asia emerges as the leading contributor with nine 

studies (60%), driven primarily by India and China. North America follows with 4 studies 

(26.67%) from the USA, while Europe accounts for two studies (13.33%), contributed by 

the UK and Switzerland. Asia’s dominance in publication output can be attributed to 

coordinated national quantum strategies, large-scale public research funding, and strong 

integration between academic institutions and government-supported quantum 

programmes. In particular, India and the USA lead QC-driven drug discovery due to strong 

national quantum initiatives, significant government investment, and ready access to 

cloud-based Noisy Intermediate-Scale Quantum (NISQ) hardware from providers such as 

IBM and Google. In contrast, other regions, including Africa and Oceania, remain 

underrepresented due to limited research funding, restricted access to quantum 

hardware, and the absence of dedicated national quantum programmes. Figure 3 shows 

the geographic distribution of the 15 studies included in this review. 

Figure 3. Country-wise distribution trends 
 

3.3. Drug discovery stages discussed 
The distribution shows that current work is more concentrated in the early stages of 

property prediction, discussed 7 times, followed by molecular generation, discussed 5 

times and then drug-target interaction, which was discussed 3 times. These tasks are 

computationally intensive and the most crucial, making them the functions that can 
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benefit greatly from quantum accuracy and speedup. These findings provide the 

empirical foundation necessary to answer Q1, as they reveal where quantum computing 

is currently being applied within the drug-discovery pipeline. Figure 4 shows the 

frequency of discussion of algorithms. 

Figure 4. Drug discovery stages and frequency of discussion 
 

3.4. RQ1: Which stages of the drug discovery pipeline is quantum computing being 

applied? 
The findings from the synthesis of these 15 empirical studies show that quantum 

computing applies to several stages of the drug-discovery pipeline, with the strongest 

concentration being early-stage computational tasks. Evidence from Figure 4 shows that 

property prediction is one of the stages where QC was applied. Examples include [26], 

[27], [28], who estimated properties such as binding affinity and ADME-Tox behaviour. QC 

is also applied in drug–target interaction prediction and molecular screening, as shown 

by [22], [27], and [33]. Another major area of application is molecular generation, where 

quantum generative models are used to explore chemical space and propose new, drug-

like structures, as shown by [33]. In addition, quantum computing contributes to structural 

and conformational optimisation shown by [21], [22], [32]. Altogether, these works indicate 

that quantum computing is applied across the spectrum of drug discovery stages, 

including property prediction, screening/interaction prediction, structural optimisation, 

and molecular generation.  
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Across the 15 empirical studies, a total of 12 different quantum algorithms were 

identified. Figure 5 shows the frequency distribution across all studies, with VQE being 

the most widely adopted algorithm, followed by QAOA and QGAN. This reflects the 

dominance of variational algorithms and quantum machine-learning methods.  Figure 5 

shows the algorithms utilised and their frequency of application.  

Figure 5. Algorithm frequency distribution 
 

Table 6 shows the drug discovery stages discussed and the algorithms utilised in each 

stage. 
Table 6. Algorithm vs Drug Discovery Stage 

D
ru

g 

D
is

co
ve

ry
 

St
ag

e 

V
Q

E 

Q
A

O
A

 

Q
SV

M
 

Q
N

N
 

Q
G

A
N

 

Q
CN

N
 

Q
SV

C 

Q
SV

R  

SB
 

Hybrid 

Simula

tion 

Hyb

rid 

QML 

Grover

’s 

Algorit

hm 

Protein folding ✓           ✓ 
Property 

prediction 
✓✓
✓✓ 

✓
✓ 

    ✓   ✓ ✓  

Molecular 

generation 
 ✓   ✓✓

✓ ✓       

Conformation/opti

misation 
 ✓       ✓    

Identification/scre

ening 
  ✓ ✓ ✓ ✓       
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D
ru

g 

D
is

co
ve

ry
 

St
ag

e  

V
Q

E 

Q
A

O
A

 

Q
SV

M
 

Q
N

N
 

Q
G

A
N

 

Q
CN

N
 

Q
SV

C 

Q
SV

R  

SB
 

Hybrid 

Simula

tion 

Hyb

rid 

QML 

Grover

’s 

Algorit

hm 

Drug-target 

interaction 
✓  ✓ ✓    ✓     

Phytopharma 

modelling 
         ✓   

 

Table 6 maps each algorithm to the drug-discovery stages in which it was applied. The 

synthesis shows that VQE is used primarily in property prediction. QAOA similarly appears 

in optimisation and property-prediction tasks. Machine-learning-based algorithms (QSVM, 

QSVC, QNN, QCNN) are primarily used for screening, classification, and drug–target 

interaction prediction, reflecting their application in analysing high-dimensional 

molecular descriptors. Generative models such as QGAN dominate molecular generation, 

where chemical space exploration is required. Table 7 shows the categorisation of the 

types of algorithms used in the empirical studies. 

 

Table 7. Type of Algorithm 

Type of algorithm Number of Studies Characteristics 

Hybrid 13 
Combines quantum algorithms with 

classical pre-processing or post-

processing. 
Quantum 1 Exclusively pure quantum 

Quantum-inspired 1 
Classical algorithms mimicking 

quantum behaviour. 

 

In addition to the distribution of individual algorithms, the analysis of algorithm types 

provides insight into how quantum methods are being utilised. Three categories of 

algorithms emerged: hybrid quantum–classical, pure quantum, and quantum-inspired. 

Hybrid approaches overwhelmingly dominate, with 13 out of 15 studies adopting a hybrid 

pipeline. Only one study used a fully quantum algorithm, and one study used a quantum-

inspired method. Hybrid quantum–classical approaches outperform fully quantum 

models primarily due to current NISQ-era hardware constraints. Classical optimisers 

manage error attribution and solution convergence, while quantum circuits address 
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combinatorial state exploration. This division compensates for noise levels and limited 

qubit counts that otherwise undermine fully quantum workflows. This suggests that 

hybrid quantum-classical approaches maximise the feasible quantum advantage while 

remaining operational in the current hardware. Taken together, the algorithm frequency 

distribution shown in Figure 5, the alignment of algorithms with specific drug-discovery 

tasks shown in Table 6, and the dominance of hybrid algorithm types shown in Table 7 

illustrate how quantum algorithms are being practically deployed across the drug-

discovery pipeline. These findings help answer Q2 by explaining the use of quantum 

algorithms in the drug discovery process, demonstrating clear patterns in how algorithm 

families are matched to task requirements and implemented primarily through hybrid 

quantum–classical workflows. 

 

3.5. RQ2: How are the quantum computing algorithms utilised within the drug 

discovery process? 
 

1) Variational Quantum Eigensolver (VQE) 
VQE is a hybrid quantum-classical algorithm that seeks to find eigenvalues, with the 

computation workload split between the classical and quantum parts of the 

hardware [35]. VQE works by applying a quantum circuit to model the physics and 

entanglement of the electronic wavefunction and then optimising the parameters of the 

ansatz to minimise this trial energy, constrained always to be higher than the 

exact ground state energy of the Hamiltonian, which by virtue of the variational principle 

is always greater than or equal to the true ground-state energy of the Hamiltonian [36]. 

In other words, VQE computes the ground-state energy by minimizing the expectation 

value of a quantum circuit. VQE was applied by [23] to simulate the ground-state energy, 

and they reported greater precision than classical QM/MM models. [30], estimated 

molecular energy using VQE and recorded better accuracy than Density Functional 

Theory (DFT) and Hartree-Fock theory (HF). [32], also estimated molecular binding 

energies using VQE with higher accuracy than Hartree-Fock (HF). Lastly, [34] calculated 

the electronic structure using VQE and found greater accuracy with lower computational 

resources. Overall, VQE achieved better accuracy and precision in DFT/HF molecular 

energy calculations. 
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2) Quantum Approximate Optimisation Algorithm (QAOA) 
QAOA is a hybrid quantum-classical algorithm for producing approximate solutions for 

combinatorial optimisation problems. It aims to maximise the number of satisfied clauses 

in max-satisfiability problems or to solve any polynomial, unconstrained, binary 

optimisation formulation. QAOA can find optimal parameters in drug design, such as 

identifying the most effective molecular configurations. It identifies low-energy 

configurations and optimal molecular conformations.  [24] applied QAOA in molecular 

conformation and noted faster optimisation because the time-to-target factor was 

reduced for small molecules. [31] applied QAOA in property prediction and noted 

increased predictive performance for small molecules. Finally, [32] applied QAOA for 

structure analysis alongside VQE for energy estimation and reported efficient, accurate 

molecular geometries. Overall, QAOA offers improved predictive performance and 

accurate molecular geometry prediction, making it ideal for tasks such as optimisation 

and conformational analysis. 
 

3) Quantum Support Vector Machine (QSVM) 
QSVM exploits the parallelism and entanglement property of quantum mechanics to 

classify data points into well-defined, distinct categories. [37] reduce the computational 

burden associated with separating molecular features, and it applies to predictive models. 

[38] applied QSVM to predict molecular interactions and the identification of drug 

candidates, noting improved accuracy and scalability compared to classical support 

vector machine and neural network algorithms. QSVM can process high-dimensional 

molecular descriptors and outperforms classical SVR in prediction tasks. 
 

4) Quantum Neural Networks (QNN) 
QNNs represent the crossover of quantum computing with deep learning. Quantum-

enhanced feature spaces enable fast, efficient data operations over quantum data, 

thereby capturing complex patterns and correlations that are not available to classical 

architectures [39]. QNNs to facilitate the process of target identification, molecular 

docking, compound optimisation, protein-ligand interactions, and binding affinity 

predictions and speed this process up by exploiting quantum parallelism, entanglement, 

and superposition in pattern recognition and simulation of molecules[40]. [25], [38] 

integrated a QNN with QSVM for molecular interaction predictions and reported 

improved accuracy over classical NN models. 
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5) Quantum Generative Adversarial Network (QGAN) 
GANs discover drug candidates by generating molecular structures that satisfy chemical 

and physical properties and bind the receptor for the target disease [41]. Quantum GANs 

can offer several opportunities, such as stronger repressibility, learning speedup, the 

ability to learn richer representations of molecules, the ability to search exponentially 

growing chemical space with increasing qubit count, and the ability to sample from 

distributions that may be hard to model classically [41]. As such, [26], [28] achieved novelty 

by generating molecules with improved drug-likeness, with [28] reporting a +30% drug-

likeness score. [33] also used QGAN and QCNN to increase accuracy over classical 

GAN/CNN for screening and molecular generation. 
 

6) Grover’s Algorithm 
Grover's quantum search algorithm provides quadratic acceleration over classical 

solutions [42], [43], [44]. Grover's algorithm is applied to search in unstructured data by 

scaling the number of search iterations, thereby polynomially accelerating the search 

[45]. The unique capabilities of Grover's algorithm were utilised by [22], who accelerated 

and optimised protein folding. 
 

7) Quantum Support Vector Classifiers (QSVC) 
QSVC elicits patterns in the data by embedding classical inputs into high-dimensional, 

complex Hilbert spaces, thereby efficiently producing atypical patterns that could yield 

a quantum advantage in training speed, prediction accuracy, and classification [46]. This 

algorithm was used by [29] for ADME-Tox prediction, and it was observed that increased 

predictive power was achieved, resulting in better classification with an AUC-ROC of 

0.80-0.95 across various ADME-Tox datasets. 
 

8) Simulated Bifurcation (SB) 
SB is an algorithm that uses parallelism for optimisation problems. [24], [47], [48], have 

used QAOA and SB and observed faster convergence of molecules as the time to target 

factor is reduced, hence SB worked in optimising the process. 
 

9) Hybrid Quantum Machine Learning (Hybrid QML) 
Integrating classical computing with quantum computing addresses the bottlenecks in 

quantum hardware and computationally intensive challenges [49]. Hybrid QML was used 
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by [27], and increased speed and accuracy were observed for binding affinity prediction 

to gain a +6% increase in prediction over classical methods. 
 

10) Hybrid Simulation 
A hybrid QM/MM simulation combines the power of QM with accuracy and MM with speed 

for structure-based drug design and calculation of properties in general [50]. In 

improving complex interaction modelling, [21] used a hybrid simulation. 
 

11) Quantum Support Vector Regression (QSVR) 
QSVR is for property prediction instances, regression tasks with the inclusion of 

predicting continuous values, such as binding affinities in drug-target interactions. It 

handles high-dimensional data and detects non-linear patterns. QSVR uses the concepts 

of quantum computing in conjunction with the classical SVR algorithm. First, it maps 

classical features to the quantum feature space to convert the input data into quantum 

states; then, quantum kernel computation exploits superposition and entanglement to 

accurately measure similarity. QSVR was utilised by ]20[ , and he recorded a gain in 

prediction accuracy of 94-99% in drug target interaction. 
 

12) Quantum Convolutional Neural Networks (QCNN) 
QCNN will find the correlation between data by stacking the convolution layer and the 

pooling layer. Then, the convolutional layer learns new hidden representations by 

combining surrounding pixels, while the pooling layer reduces the size of the feature 

map, reducing the computational cost of learning and preventing overfitting. According 

to [33], [51] used QGAN and QCNN and noted increased accuracy over classical GAN/CNN 

in screening.  

 
13) Categories of the algorithms 
Overall, quantum machine-learning classifiers such as QSVM, QSVC, QSVR and QNN play 

a central role in early-stage prediction tasks, including screening, drug–target interaction 

modelling and ADME-Tox classification. Their advantage lies in quantum-enhanced 

feature extraction. Variational algorithms such as VQE and QAOA are used for energy 

estimation, conformational optimisation and structural modelling, demonstrating their 

suitability for tasks that rely on quantum descriptions of molecular states. Quantum 

generative models (QGANs) enable the exploration of chemical space and the creation of 
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novel molecular structures. However, understanding how these algorithms are used also 

requires recognising the role of algorithm type, as summarised in Table 7. The dominance 

of hybrid quantum–classical approaches indicates that most practical implementations 

integrate quantum circuits with classical optimisation or preprocessing, enabling 

feasibility under NISQ hardware constraints. Pure quantum algorithms remain rare, as 

shown in this study. One study utilised a pure quantum algorithm, and quantum-inspired 

methods serve primarily as scalable approximations. This distribution shows that 

algorithm utilisation is shaped not only by computational purpose but also by hardware 

maturity. 
 

14) Benefits of QC in drug discovery 
Table 8 shows that quantum and hybrid quantum-classical algorithms consistently 

improve accuracy, speed, generative novelty, and efficiency in the drug discovery pipeline. 

The most frequently reported benefit is improved accuracy, followed by increased 

computational speed, enhanced generative novelty for molecule design and greater 

efficiency in resource utilisation. 
 

Table 8. Benefits of QC in drug discovery 

Ref Algorithm Description Benefit 

[20] QSVR 
Improved DTI prediction accuracy by 

94-99% 
Accuracy 

[22] Grover’s algorithm Accelerated protein folding Speed 

[23] VQE 
More accurate ground state energy 

estimations 
Precision 

[24] QAOA, SB Reduction of time-to-factor Speed 

[25] QSVM, QNN 
Improved accuracy of molecular 

interactions and drug candidate 

identification 

Accuracy 
 

 

[26] QGAN 
Generated molecules with improved 

druglikeness 
Novelty 

[27] Hybrid QML 
Increased speed and accuracy by 6% 

for binding affinity prediction 
Accuracy 

Speed 

[28] QGAN 
+30% druglikeness score in molecule 

generation 
Novelty 
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Ref Algorithm Description Benefit 

[29] QSVC 
Better classification results with an 

AUR ROC of 0.80-0.95 
Predictive power 

[30] VQE 
Greater accuracy in molecular energy 

estimation and protein ligand binding 
Accuracy 

[31] QAOA 
Improved predictive accuracy and 

efficiency in molecule generation and 

property prediction 

Accuracy 
Efficiency 

[32] VQE, QAOA 
Accurate folding and structural 

analysis 
Accuracy 

[33] QGAN, QCNN 
Increased accuracy in screening and 

molecular generation 
Accuracy 

[34] VQE 
Higher accuracy with fewer 

computational resources 

Accuracy 
Reduced 

computational 

resources 

 

15) Benchmarking  
Table 9 summarises the benchmark datasets, and Table 10 shows a comparison against 

classical methods. Benchmarking results across the reviewed studies show strong 

empirical performance of quantum and hybrid models. Dataset evaluations demonstrate 

high predictive accuracy on DAVIS (94.21%) and KIBA (99.99%), enhanced molecule 

generation on ZINC, faster optimisation on QM9 and improved drug-likeness (+30% QED) 

and binding-affinity prediction (+6% on PDBbind). ADME-related datasets such as HIA, 

CYP2D6 and DILI also reported strong AUC values of 0.80–0.95. Despite the promising 

performance, the interpretation of these results is constrained by dataset-related 

limitations. Many benchmark datasets, such as QM9 and ZINC, consist of relatively small, 

curated, or chemically constrained molecular spaces that may not fully represent real-

world drug-like chemical diversity. Similarly, datasets like DAVIS and KIBA are biased 

toward well-studied protein targets, potentially inflating performance estimates and 

limiting generalisability to novel or less-characterised targets. ADME and toxicity datasets 

often suffer from class imbalance, label noise, and limited experimental validation, which 

can affect robustness despite high reported AUC values. These constraints highlight 

those current empirical gains, while promising, may not directly translate to large-scale 
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industrial drug discovery without further validation on more diverse, noisy, and clinically 

representative datasets. Table 10 shows algorithmic performance comparisons between 

classical baselines and quantum-enhanced methods. 

 
Table 9. Datasets and their evaluation metrics 

Type Description 

Dataset Evaluation Metric / Result 

DAVIS 94.21% accuracy 

KIBA 99.99% accuracy 

Zinc 
Improved predictive performance, efficient molecule 

generation 

QM9 Faster convergence of molecules (optimisation) 

QM9 / PC9 +30% improvement in QED score (drug-likeness) 

PDBbind +6% improvement in binding affinity prediction 

HIA AUC 0.80–0.95 (ADME absorption prediction) 

CYP2D6 AUC 0.80–0.95 (enzyme–substrate classification) 

DILI AUC 0.80–0.95 (hepatotoxicity) 

 
Table 10. Algorithmic performance comparisons 

Type Description 

Method / Baseline Performance Outcome using QC-enhanced methods 

Classical exhaustive search 
Faster, optimised, accelerated search under the 

quantum model. 

Classical molecular mechanics 

(MM) 
Higher precision using QM/MM 

DFT / Hartree–Fock 
Higher energy-estimation accuracy using QC 

models 

Hartree–Fock (folding analysis) Accurate folding and structural analysis with QC 

Classical GAN / CNN 
QC-based generative and predictive models 

outperform classical models. 

VAE baseline No advantage over VAE 
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Algorithmic comparisons further show that QC-enhanced methods outperform classical 

baselines, offering faster, more optimised searches, higher precision than MM and 

DFT/HF, improved folding analysis, and superior generative and predictive capabilities. 

Together, these results demonstrate the diverse evaluation strategies used and 

consistently highlight QC’s potential to improve accuracy, optimisation efficiency and 

molecular modelling quality in drug discovery. Quantum approaches outperform classical 

baselines largely due to superposition, which enables the simultaneous evaluation of 

multiple molecular configurations, and entanglement, which supports the modelling of 

complex molecular interactions that classical methods struggle to represent These allow 

more expressive molecular-state representations, and this advantage becomes 

particularly evident in conformational sampling and molecular energy estimation tasks, 

where classical heuristic approximations incur scaling limitations. 

 

Findings from Tables 8, 9, and 10 help answer RQ3 by showing the specific mechanisms 

by which quantum computing enhances the identification of novel drug candidates. The 

tables present empirical metrics demonstrating improved accuracy, computational 

efficiency, and generative capability across the reviewed studies.  

 

3.6. RQ3: How can Quantum Computing enhance the identification of Novel drug 

candidates 
The evidence from the 15 papers studied shows that quantum computing outperforms 

classical methods in improving reliability and expanding the chemical space. Results show 

a strong empirical trend of improved predictive power as accuracy is an enhancement 

mechanism that occurs eight (8) times. This is shown in studies including [20], who 

attained a 94-99% gain in accuracy in drug-target interaction using QSVR, [27], who 

attained a +6% increase in the binding affinity prediction using Hybrid QML, [25], who 

recorded increased accuracy in molecular interactions and identification of drug 

candidates using QSVM and QNN, [30], who attained greater accuracy in molecular energy 

estimation and protein-ligand binding over HF/DFT using VQE, [31], who noted improved 

predictive accuracy in generated molecules that fit the target constraints, [32], who 

attained greater accuracy in protein folding and structural analysis over HF using the 

VQE and QAOA, [33], who noted increased accuracy over classical GAN and CNN in 

screening and molecular generation, and finally, [34], who attained higher accuracy while 

using fewer computational resources using VQE. Speed is another enhancement 
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mechanism that was noted 3 times. [22] accelerated and optimised protein folding using 

Grover's algorithm, while [24] used QAOA and SB to reduce time-to-factor, hence faster 

optimisation, and [27] increased speed and accuracy for binding affinity prediction using 

Hybrid QML. Algorithms such as QAOA, simulated bifurcation (SB), and Grover's algorithm 

demonstrated significant speedups for structural optimisation tasks, while hybrid QML 

pipelines improved convergence in affinity-prediction workflows. Such speedups are 

particularly relevant to reducing drug discovery timelines. Another enhancement is 

increased predictive power, as noted by [31], who conducted an ADME-Tox prediction and 

reported better classification results using QSVC, with an AUC-ROC of 0.80-0.95. [23] 

attained high precision in the simulation of ground state energy using VQE, and [31] 

identified improved efficiency in molecular generation using QAOA. Finally, [36] reduced 

computational resources by using VQE to obtain an accurate electronic structure.   

 

Across these 15 studies, quantum models consistently outperformed their classical 

variants for the same tasks. Examples include how VQE has repeatedly outperformed 

classical quantum-chemistry methods such as DFT and HF in higher-precision molecular-

energy estimates [23], [30], [32]. In generative modelling, QGAN achieves a +30% 

improvement in QED score over classical GANs [28], demonstrating a superior ability to 

explore chemical space. Analogously, quantum classifiers such as QSVC and QSVM have 

outperformed classical SVMs and neural networks in ADME-Tox classification and drug-

target interaction prediction studies, with QSVC achieving AUCs of 0.80–0.95 [29].  

Collectively, the evidence shows that quantum computing enhances the identification of 

novel drug candidates by improving predictive reliability, speeding up search and 

optimisation processes, and enabling the generation of unique, biologically meaningful 

molecular structures, thereby extending the scope and speed of early-stage drug 

discovery. Moreover, the novelty gains recorded indicate that quantum models can 

explore chemical space beyond classical limits, enabling the identification of structurally 

unique drug candidates. Most improvements are realised in computation-intensive stages 

that depend on scalability, namely molecular conformation and generation, target 

interaction, and energy estimation. This is because QC leverages quantum parallelism 

towards the evaluation of multiple molecular configurations all at once, superposition to 

naturally encode complex electronic states, and entanglement to reduce search 

complexity.  
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Analysis reveals several limitations, with NISQ challenges related to limited qubit counts 

and hardware noise being the most dominant constraints, as identified in all 15 studies. 

The second most frequent limitation is Scalability, which was highlighted in 5 studies. 

Simulation dependence is another constraint identified in 3 studies [28], [30], [52]. Data 

encoding and molecular-representation challenges and dataset limitations, each with 2 

mentions, [24], [33] and [28], [30] respectively. Less frequently observed but still relevant 

were algorithm/software immaturity, noted by [31], and limited molecular complexity, 

noted by [26], each occurring once. These findings help us answer Q4 by identifying the 

technological factors that restrict QC’s practical integration into drug-discovery 

workflows. Table 11 presents the challenges noted by the authors of the 15 empirical 

studies utilised in this study. 
 

Table 11. Author vs challenge 

Author 
NISQ 

Hardware 
Scalability 

Data 

Encoding 

Dataset 

Limitation 

Simulation 

Dependence 

Algorithm/ 

Software 

Molecular 

Complexity 

[20] ✓ ✓      

[21] ✓       

[22] ✓       

[23] ✓ ✓      

[24] ✓  ✓  ✓   

[25] ✓ ✓      

[26] ✓      ✓ 
[27] ✓       

[28] ✓   ✓ ✓   

[29] ✓     ✓  

[30] ✓   ✓ ✓   

[31] ✓ ✓      

[32] ✓       

[33] ✓  ✓     

[34] ✓ ✓      
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3.7. RQ4: How do current technological and technical limitations influence the 

application of quantum computing in drug discovery? 
The reviewed studies clearly show that technological and technical limitations seriously 

constrain the application of quantum computing to drug discovery, with NISQ-related 

hardware constraints predominating. According to the challenge-frequency analysis, all 

15 papers reported issues related to noisy, unstable, low-qubit-count quantum devices. 

This universal limitation, noted by authors like [20] and [22], predetermines that 

essentially all quantum algorithms used in the current research in drug discovery should 

run under the conditions of small coherence time, high error rates, and limited circuit 

depth, confining most research to hybrid or simulated environments, rather than actual 

quantum processors. The full quantum advantage thus becomes unrealised. Scalability 

remains one of the challenges for the practical application of QML models in drug 

discovery. Most evaluations are restricted to relatively small molecular systems, as 

increases in molecular complexity significantly raise computational resource 

requirements, limiting the feasibility of scalable implementations. Current quantum 

algorithms therefore, struggle to scale to larger, drug-like molecules or more complex 

biological systems, particularly under constraints imposed by limited qubit availability. As 

a result, encoding high-dimensional molecular structures often requires simplified 

representations, reducing the ability of model outcomes to generalise to realistic 

pharmaceutical scenarios. Collectively, these limitations confine the practical applicability 

of quantum computing to small molecules and early-stage tasks, narrowing the range of 

drug-discovery problems that can be realistically explored. Another challenge limiting the 

application of QC is simulation dependence, as reported by [28], [30], [52].  

 

Many studies rely on simulators since hardware is too noisy or not scalable. Simulation 

is useful for prototyping, but it cannot fully reproduce the noise characteristics of real 

NISQ hardware. This makes it hard to translate the results into practical application. Data 

encoding and representation challenges make translating molecules into qubit 

representations very problematic. Most current encoding schemes are unable to handle 

large molecular graphs or protein structures, as they require circuit depths well beyond 

the reach of NISQ. The dataset limitations limit generalisability, as the datasets used are 

small. Algorithmic and software limitations mentioned by [29] identify that gaps in 

quantum software maturity lead to unstable or incomplete implementations. Finally, 

limitations in molecular complexity noted by [26] indicate that quantum generative 
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models often struggle with complex, drug-like structures beyond simple molecules, 

limiting the realistic exploration of drug-like chemical space. While the advantages of QC 

are clearly evident from the 15 studies, in practice, deploying QC across a complete 

pharmaceutical drug discovery pipeline is still in its infancy, as it faces many challenges 

related to noise, limited qubit counts, immature hardware, and scalability. These issues 

also highlighted research gaps, including the need for scalable systems, simulation 

dependability, challenging problems in molecular representation, and NISQ-era challenges 

such as decoherence, errors, and limited qubit counts.  
 

3.8. Conceptual Framework 
This conceptual framework provides a structured hybrid quantum-classical pipeline that 

incorporates the highest-performing quantum algorithms identified in this review. It 

addresses one of the key gaps observed, which is the absence of an end-to-end pipeline, 

by showing how hybrid quantum-classical algorithms can be used across the drug 

discovery pipeline.  Figure 6 shows a conceptual framework for a hybrid quantum-

classical drug discovery pipeline. 

 

Algorithm-to-stage linkages were determined based on reported empirical performance 

across molecular simulation, screening, and optimisation tasks, with placement guided by 

task-specific suitability and demonstrated computational efficiency. These assignments 

reflect observed computational strengths, such as accuracy, stability, convergence 

efficiency, and scalability, within NISQ constraints. 
 

The process starts with the Target Identification Phase, in which a biological component 

responsible for a disease is identified and assessed for druggability using classical 

bioinformatics and domain-specific knowledge. Once targets are validated, the workflow 

transitions into the Hit/Lead Discovery Phase. In this phase, QSVC performs molecular 

screening to classify compounds as favourable or unfavourable based on ADME–Tox 

profiles. This classification identifies high-priority molecules to narrow the chemical 

search. QSVC was chosen because it excels at precise, accurate classification [53], as 

shown by [31], who reported AUC-ROC values of 0.80-0.95 across various ADME-Tox 

datasets. De Novo follows to generate novel druglike molecules. QGAN is utilised as it 

has empirically shown to produce novel drug-like molecules and expand chemical 

diversity. Studies [26], [28], [33] demonstrated effective molecular generation using 
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QGANs, with [28] reporting a +30% improvement in drug-likeness. Quantum feature 

extraction is then performed using VQE to identify descriptors, such as binding potential 

and energy estimates. Collectively, this phase aims to generate, screen and characterise 

molecules to identify the most promising chemical candidates for optimisation. VQE is 

assigned to this stage due to its superior accuracy and precision in molecular energy 

calculations compared to classical HF and DFT baselines, as reported in [23], [30], [32].  

 

Figure 6. Hybrid Quantum-Classical Drug Discovery Pipeline Framework 

 
The workflow then advances to the Lead Optimisation Phase, whose aim is to refine 

molecular structures, enhance predictive accuracy and prioritise the most promising 

drug-target interactions for pre-clinical testing. Structural optimisation uses VQE 

because VQE provides precise electronic structure and energy refinement [23],[30] and 

QAOA which demonstrated faster optimisation and accurate molecular conformation 
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prediction in small molecular systems [24],[31] to introduce conformational constraints 

that improve molecular recognition by a target receptor, while Grover’s algorithm 

accelerates searches through protein-folding space [22]. This is followed by property 

prediction using Hybrid-QML to estimate binding affinity, ADME–Tox and 

pharmacokinetic behaviours, producing ranked molecular candidates. Hybrid QML is 

assigned here due to its demonstrated ability to improve binding affinity prediction, with 

[27] reporting a +6% accuracy gain over classical baselines. Drug-target interaction is 

carried out to predict the likelihood of a molecule binding to a specific protein target. 

This stage employs QSVR to perform regression in a quantum-enhanced feature space 

to enhance drug-target interaction prediction, thereby producing quantitative rankings 

of candidate-target pairs. QSVR is employed for quantitative drug–target interaction 

prediction, as it has been shown to model continuous binding-affinity values in quantum-

enhanced feature spaces effectively, achieving prediction accuracies of 94–99% in drug–

target interaction tasks [20]. 
 
Finally, the workflow proceeds to the Preclinical Validation Phase, whose aim is to 

experimentally validate predicted candidates and confirm which molecules are viable for 

further development. Classical validation methods such as molecular docking, molecular-

dynamics simulations and in-vitro assays evaluate whether predicted binding 

interactions, stability and ADME–Tox behaviours hold in practical settings. The Final 

ranked candidates proceed for further development. 
 

The classical components of the framework support all quantum-enabled stages. 

Classical data preparation curates, cleans and standardises chemical libraries, protein 

structures and bioactivity datasets, followed by the computation of descriptors required 

for quantum encoding. The orchestration layer coordinates the workflow, schedules 

quantum calls and integrates quantum outputs with classical computations. The 

validation and feedback module sends top-ranked candidates to docking, molecular 

dynamics simulations, and in vitro assays, with experimental results used to retrain and 

refine the quantum models. 
 

lmplementation of the proposed framework in pharmaceutical R&D should follow a 

hybrid deployment strategy that integrates quantum workflows into existing classical 

pipelines. Classical infrastructure can support data preparation, feature extraction and 
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initial filtering, while quantum algorithms are selectively applied to computationally 

intensive tasks such as optimisation, screening and energy estimation. A cloud-accessible 

NISQ platform will enable prototyping without requiring in-house quantum hardware. An 

orchestration layer should manage data flow and integrate quantum outputs with 

classical modelling tools. Experimental feedback from docking, molecular-dynamics 

simulations and in vitro assays can then be used to iteratively refine the quantum models 

under current hardware constraints. 
 

3.9. Implications 
1) Technical Implications 
The findings show that progress in the NISQ era will continue to rely on hybrid systems 

rather than fully quantum pipelines as hybrid quantum–classical approaches dominate 

current applications. This means that organisations must remain grounded in hybrid 

architectures to manage expectations realistically and advance error-corrected 

hardware, scalable quantum algorithms, and more expressive molecular-representation 

schemes to support end-to-end quantum-integrated drug-discovery pipelines. Second, 

the concentration of strong empirical results in molecular generation, property 

prediction, structural optimisation, and drug–target interaction indicates that quantum 

computing is presently most impactful in computationally intensive, quantum-

mechanically structured tasks. This suggests that pharmaceutical organisations should 

prioritise quantum deployment in these bottleneck areas to gain improvements in 

accuracy, novelty generation, and predictive reliability, rather than prematurely 

attempting full-pipeline quantum adoption. 
 

2) Policy Implications 
The geographic concentration of studies highlights the need for national research 

agencies to establish quantum-ready innovation hubs, hardware-access programmes and 

specialised training pipelines to reduce global disparities, particularly in 

underrepresented regions such as Africa and South America. Policymakers must also 

develop ethical, governance, and data security frameworks to regulate quantum-

generated molecular data and ensure the transparent, responsible use of quantum-

assisted decision tools.  
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3) Industrial Implications 
Pharmaceutical companies should integrate quantum resources into existing 

infrastructure through hybrid QC-classical pipelines, rather than standalone quantum 

models. Organisations should prioritise QC in early-stage bottlenecks, where the review 

showed the strongest returns in screening, molecular generation, structural optimisation, 

and property prediction. 

 
4) Limitations of the Study 
This study noted several limitations, including a limited database scope of four databases, 

which may have omitted relevant studies from other repositories. Second, the study was 

limited to English-language papers. Third, the study only utilised empirical papers. Fourth, 

out of the 1291 papers, only 15 met the inclusion-exclusion criteria, meaning that all 

relevant work was not exhausted. 
 

3.10. Future works 
Based on the patterns identified in this review, a number of clear directions emerge for 

future research. First, significant advancements are required in quantum hardware, 

particularly in error correction, qubit scalability, and noise mitigation, to enable more 

chemically realistic simulations. This includes improving quantum feature encoding, 

quantum kernels and hybrid QML architectures. The improvement will strengthen the 

ability to encode larger drug-like molecules and enhance scalability. Second, dependence 

on simulation must be reduced. Since most studies tested quantum algorithms on 

classical simulators due to NISQ limitations, future work should focus on experiments on 

real quantum hardware, with noise-aware training, error mitigation, and hardware-

specific optimisation to better capture accurate representations of large biomolecules, 

protein–ligand systems, and conformational landscapes.  
 

Third, the review identifies a critical absence of standardised benchmarks. Future work 

should develop open biomedical quantum datasets and unified benchmarking 

frameworks to enable reproducible, comparable, and rigorous assessment of quantum vs 

classical methods. Finally, geographic concentration in QC research indicates the need 

for broader global participation. Policy initiatives, funding schemes, and quantum 

innovation hubs will be essential to expand the discipline beyond its current regional 

clusters and ensure equitable scientific progress. 
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Overall, while quantum computing has already demonstrated tremendous potential for 

the enhancement of accuracy and speed in early-stage discovery tasks, due to 

technological constraints, it currently has a limited impact. However, ongoing progress in 

hardware, algorithm design, and hybrid integration strategies positions quantum 

computing for an increasingly transformative role in the future of drug discovery. 
 

4. CONCLUSION 
 

This systematic literature review analysed 15 empirical studies published between 2020 

and 2025 on quantum computing applications in molecular design and drug discovery. 

Findings show that QC provides significant benefits in tasks including molecular property 

prediction, molecular generation, structural optimisation, and drug–target interaction 

prediction with algorithms such as VQE and hybrid QML improving accuracy, novelty 

generation, predictive reliability, and computational efficiency. These results demonstrate 

that quantum computing enhances existing computational workflows while also 

introducing novel generative capabilities that expand the chemical space explored during 

drug discovery. Despite these advances, this review identified a clear gap in the current 

literature: no study has yet proposed or implemented an end-to-end quantum-integrated 

drug discovery pipeline, as existing works remain fragmented and focused on isolated 

tasks. To address this gap, this review introduced a conceptual hybrid quantum–classical 

framework that synthesises empirical findings and maps validated quantum algorithms 

to specific stages of the drug discovery pipeline. The framework provides structured 

guidance on how current quantum methods can be realistically deployed under NISQ 

constraints, bridging fragmented empirical efforts into a unified, system-level workflow. 

However, fully quantum end-to-end drug discovery pipelines remain impractical due to 

NISQ-era hardware constraints, including hardware noise, limited qubit, scalability 

limitations, and a heavy reliance on workflow simulations. As a result, current 

implementations predominantly adopt hybrid quantum–classical approaches rather than 

fully quantum workflows. Future research should therefore prioritise the development 

of error-corrected and fault-tolerant quantum hardware, scalable and qubit-efficient 

quantum algorithms, improved molecular encoding strategies, and large-scale validation 

on real quantum devices beyond simulation environments, as these represent key 

milestones for enabling practical end-to-end quantum pipelines. This review, therefore, 

concludes that while quantum computing holds strong potential to accelerate early-stage 
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drug discovery, its broader impact will be realised progressively as these hardware and 

algorithmic milestones are achieved, with hybrid quantum–classical architectures 

remaining the most practical pathway for integrating quantum computing into 

pharmaceutical R&D. 
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