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Abstract. This study examines how quantum computing (QC) is
being applied to molecular design and drug discovery. This study
aims to investigates how QC surpasses classical limitations,
Focusing on empirical performance in precision, accuracy, and
optimisation tasks. Study design use PRISMA 2009 guidelines, 15
empirical studies (2020-2025) were included. Data were extracted
on the drug-discovery stage, the algorithm used, evaluation metrics,
benefits, and limitations. The Ffindings show QC outperforms
classical methods particularly through hybrid quantum-classical
models. Thirteen studies reported superior gains, including AUC-
ROC values of 0.80-0.95, +30% improvement in drug-likeness (QED),
+6% increase in prediction accuracy, and up to 99% accuracy in
drug-target interaction tasks. However, noisy intermediate-scale
quantum (NISQ) hardware limitations and poor scalability limit real-
world deployment, due to noise, and limited qubit counts.
Consequently, current performance results are largely simulation-
based rather than hardware-validated. In contrast to prior
algorithm-centric reviews, this study provides a consolidated
empirical synthesis and proposes a hybrid quantum-classical
pipeline that maps high-performing algorithms across the drug
discovery workflow under NISQ-era constraints. These Findings
inform pharmaceutical research and development by identifying
realistic adoption pathways and the boundaries of current

technological readiness.
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1 INTRODUCTION

Drug discovery is an important process for developing therapeutic agents that address
both long-standing and emerging health issues [1]. Despite significant advances such as
artificial intelligence (A.l), the drug discovery pipeline is characterised by developmental
timelines, high costs and the exponential scaling of molecular interactions [2], [3], [4].
Classical methods such as molecular mechanics (MM) and molecular docking (MD) have
accelerated the drug process, but they heavily rely on approximations that fail to capture
the quantum nature of molecules([5], [6]. This has resulted in diseases being underserved
due to poor safety profile predictions and the wastage of therapeutic candidates due to

ineffectiveness [2], [7], [8], [9].

Quantum computing (QC) utilises quantum bits (qubits), superposition, and entanglement
to address classically intractable molecular problems [2], [10], [11]. These principles enable
more accurate representations of molecular states, supporting property prediction,
constrained optimisation, molecular screening, and the generation of novel compounds
[12], [13]. Compared to classical approaches, QC can improve computational efficiency,
reduce experimental effort, and offer scalability advantages for high-dimensional
molecular data [7], [9]-[12]. In practical drug discovery pipelines, such improvements are
particularly valuable at early stages, where molecular screening, property prediction,
drug-target interaction modelling, and toxicity assessment determine which compounds
advance to costly laboratory validation and clinical trials [10]. Early-stage computational
accuracy is critical, as prediction errors propagate through the pipeline: false positives
waste synthesis resources. In contrast, false negatives discard viable therapeutics [2], [7].
Limitations of classical methods in capturing quantum-mechanical effects Ffurther
contribute to late-stage Ffailures [5], [6], [11], making improved early-stage precision

essential for reducing development costs and timelines.

The objective of this review is to systematically analyse and synthesise empirical
evidence on the application of QC in drug discovery, focusing on where and how QC and
hybrid quantum-classical approaches provide measurable advantages over classical
methods. Specifically, this study maps the stages of the drug discovery pipeline into a
conceptual framework and examines how current technological constraints shape

practical deployment. Recent progress in QC-enabled drug discovery has demonstrated
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promising performance over classical approaches [12], [13]. However, practical adoption
remains constrained by the NISQ-era environment [14] , which is characterised by limited
qubit counts, hardware noise and errors. These restrict the performance of fully quantum
pipelines, making hybrid quantum-classical workflows the most practical near-term
solution. Table 1 summarises the key differences between classical, quantum and hybrid
paradigms to contextualise the reasons for integrating quantum computing into drug-

discovery processes.

Table 1. Classical vs Quantum vs Hybrid frameworks

. . Classical . Hybrid Quantum-
Dimension . Quantum Computing .
Computing Classical
Quantum Parallel integration of

Computational
Deterministic logic superposition and  classical pre-processing
principle
entanglement and quantum kernels

VQE, QAOA, Quantum Hybrid VQE-DNN,
Example Algorithms SVM, CNN
GAN Quantum CNN

Balance between
Mature, scalable, Exponential state-
Strengths accuracy and hardware
interpretable space exploration
Feasibility

Integration and
High time Hardware noise, NISQ
Limitations interoperability
complexity instability
complexity

Previous reviews have examined quantum computing in molecular design and drug
discovery. Notable works include [4], [15], [16], which explored molecular simulation, QML-
based molecule generation, and property prediction, respectively, each reporting
improvements in modelling performance. However, these studies were highly task-
specific, lacked comparative evaluation against classical baselines and did not analyse
scalability or end-to-end pipeline applicability. Moreover, reviews such as [2], [17] outlined
the theoretical Foundations and accuracy gains of QC, but similarly noted that NISQ-era
noise, limited hardware stability and the need for error correction continue to restrict

practical real-world applications.
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Although several reviews have explored the potential of quantum computing in drug

discovery, most remain largely theoretical, algorithm-centric, focused on isolated tasks,
with limited systematic comparison between hybrid quantum-classical and classical
methods. Collectively, existing literature is fragmented and lacks an empirical synthesis
across the full drug discovery workflow. Moreover, no comprehensive framework
currently demonstrates how to integrate quantum algorithms across the major stages of
the drug-discovery pipeline. While QC-enabled workflows promise improved molecular
modelling and shorter development timelines, there remains no systematic empirical
review identifying where QC is practically applied and how its performance compares
with classical approaches under NISQ constraints. This review directly addresses this gap
through a consolidated empirical synthesis and a stage-mapped hybrid quantum-

classical pipeline.

The urgent need for such a consolidated empirical synthesis arises from the rapid growth
of experimental quantum studies in molecular modelling and drug discovery. As hybrid
quantum-classical approaches increasingly report performance gains, the absence of a
unified empirical framework makes it difficult to distinguish practical capability from
theoretical promise. Without structured integration guidance, researchers and industry
practitioners lack clear direction on realistic deployment points, expected benefits, and
current limitations of quantum methods. A consolidated synthesis is therefore essential
to support informed methodological selection, system design, and long-term investment

decisions in quantum-driven pharmaceutical research.

This review addresses these gaps by systematically mapping and critically analysing

empirical studies between 2020 and 2025. It provides a quantitative and qualitative

synthesis of comparative insights between quantum and classical models and proposes

a hybrid quantum-classical conceptual framework that demonstrates its utilisation

across the drug discovery pipeline. This research will answer the Following questions:

1) RQ1. At which stages of the drug discovery pipeline is quantum computing being
applied?

2) RQ2. How are quantum computing algorithms utilised within the drug discovery
processes?

3) RQ3. How does quantum computing enhance the identification of novel drug

candidates in molecular discovery?
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4) RQ4. How do current technological and technical limitations influence the

application of quantum computing in drug discovery?

The rest of the paper is structured with the following order of topics: 2. Methodology

used in this systematic review, 3. Results and Discussion, 4. Conclusion.

2. METHODS

The PRISMA (2009) framework guided the literature analysis of this study through the
stages of Identification, Screening, Eligibility, and Inclusion, which were used to determine,

select, prioritize, analyze and summarize all relevant published Findings [18], [19].

2.1. Search Strategy
This review was conducted in the fFollowing databases: IEEE Xplore, PubMed, ACM Digital

Library and Springer Nature Link. The core Boolean search string is shown as follow.

("quantum computing®™) AND ('drug discovery" OR "molecular design™) AND

("pharmaceutical" OR "biomedicine™ OR "healthcare")

2.2. Inclusion and Exclusion Criteria

Table 2 shows the inclusion and exclusion criteria used in this study.

Table 2. Inclusion and Exclusion criteria

Criterion Inclusion Exclusion

Theoretical, conceptual,
Peer-reviewed empirical
perspective, opinion papers, or
Study Type studies reporting experimental
reviews without empirical
or simulation-based evidence.

evaluation.
Studies that apply quantum
Quantum
computing or hybrid quantum- Generic quantum computing
Computing
classical methods to any studies with no drug-discovery
Relevance and
computational task within the relevance.
Application Scope
drug discovery pipeline.
Application Papers situated in Papers from domains
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Criterion Inclusion Exclusion

Domain pharmaceutical science, unrelated to biomedical or
biomedicine, healthcare-related pharmaceutical applications
molecular modelling, or

computational drug discovery.

Timeframe 2020-2025 Pre-2020

Language English Non-English

To maintain methodological rigour, grey literature such as preprints, theses, and non-
peer-reviewed reports was intentionally excluded. Only peer-reviewed empirical studies
were included, as the review aimed to evaluate practical algorithm performance,
comparisons with classical baselines, and NISQ-related constraints, which cannot be

reliably assessed using purely theoretical or conceptual works.

2.3. Screening
The initial search on November 4 yielded a total of 1291 papers, distributed as fFollows: 35
from IEEE Explorer, 122 from PubMed, 1040 from SpringerLink, and 94 from the ACM
Digital Library. 2 duplicate sets were identified and merged, yielding 2 unique papers. One
thousand two hundred twenty-nine papers were excluded during title and abstract
screening because they focused on classical or quantum methods with no contribution
to the drug discovery pipeline. This resulted in 60 papers qualifying For the Full-text
screening process. Two reviewers independently screened titles and abstracts, followed
by Full-text assessment, following the predefined inclusion and exclusion criteria.
Disagreements during the screening process were resolved through structured
discussion until consensus was reached. A Cohen's K = 0.87 which indicates substantial
agreement was calculated using the standard formula as shown in Equation 1.

K = Pl"_—;:e (1)
where P,is the proportion of observed agreement, and P,represents the expected chance

agreement.
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2.4. Eligibility

Sixty papers were eligible for the full-text screening process, and 45 were removed

because they did not involve biological concepts such as molecules or biological targets,

or because they were purely theoretical algorithm development. As a result, a total of 15

papers qualified For the systematic analysis.

2.5. Inclusion

The inclusion stage of the review shows how studies were identified, screened, and

selected. After applying the predefined inclusion and exclusion criteria, 15 studies were

Found to be suitable for inclusion in the final review. These selected studies provide the

Foundation for the analysis and discussion that follow. A detailed PRISMA Flow diagram

is shown in Figure 1.

Records identified through
databases (n=1291)

Final studies included
(n=15)

papnpul

§ IEEE Xplore (n = 35) Additional records identified through
g PubMed (n=122) other sources
g ACM Digital Library (n = 94) (n=0 )
F SpringerLink ( n = 1040)
=
— J Records excluded
—
Records after duplicates removed (n= 1229)
(n=1289) Reason 1: Papers were excluded using title and
abstract as they discussed molecular design and
drug discovery using classical methods not
ﬁ, l quantum computing or hybrid quantum -
classical.
i Reason 2: Papers were excluded as they were
a Records screened discussing biological aspects but without
(n=1289) anything relevant to drug discovery using
quantum computing.
Reason 3: Papers were discussing quantum
hardware or quantum computing but not in the
— drug discovery domain
m N ry
g Full-text arficles assessed for Full-text amcles(:xch::;_-d. with reasons
E-y T:ilbgg;' — Reason 1: Papers excluded using full-text
assessment lacked relevant practical
contribution to the drug discovery pipeline
— using quantum computing.

Reason 2. Some also did not involve molecules,
biological targets or any drug discovery process
stage.

Figure 1. PRISMA diagram to show the screening process
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2,6. Quality Appraisal

The quality of the selected studies was evaluated using the Critical Appraisal Skills
Programme (CASP) Checklist (2018). The CASP tool is a set of appraisal checklists
developed to evaluate the methodological quality, reliability and applicability of research
studies [28]. The checklists were altered to suit the practical nature of the research and

adapted structured judgments by dividing the appraisal into five major domains, as shown

in Table 3.
Table 3. CASP Checklist domains and scoring
Checklist Domain Description Scoring range
Method clarity Is the method or algorithm adequately 0 - 2 points
described?
Research objectives clarity Explicit definition of study goals. 0 - 2 points
Drug discovery stage Relevance to one or more drug discovery 0O - 2 points
coverage pipeline stages.

Outcomes and limitations Were outcomes and limitations clearly 0 - 2 points
transparency presented?
Reproducibility Transparency of data collection, 0 - 2 points

parameters set and algorithms used.

The scoring system was:
2 points - fully addressed with high quality
1 point - partially addressed or moderate quality.

O points — not addressed or insufficient quality.

Table 4 presents the quality assessment of the studies included in this study.

Table 4. CASP Quality Assessment of included studies

Research Outcomes &
Drug-Discovery
Author Method Clarity  Objectives Limitations Reproducibility Score
Stage Coverage
Clarity Transparency

[20] 2 2 1 2 2 9
[21] 1 1 2 2 1 7
[22] 2 2 2 2 1 9
[23] 2 2 2 2 2 10
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Research Outcomes &
Drug-Discovery
Author Method Clarity  Objectives Limitations Reproducibility Score
Stage Coverage
Clarity Transparency

[24] 2 2 1 2 2 9
[25] 2 2 1 2 2 9
[26] 2 2 2 2 2 10
[27] 2 2 2 2 2 10
[28] 2 2 1 2 2 9
[29] 2 2 1 2 1 8
(30] 2 2 1 2 2 9
[31] 2 2 2 2 2 10
[32] 2 2 1 2 2 9
[33] 2 2 1 2 2 9
[34] 2 2 1 1 1 7

Thirteen papers scored above or equal to 8/10 (high quality), and two scored 7/10
(moderate quality). All included studies demonstrated sufficient contextual relevance to
justify inclusion. Low-scoring studies were not excluded due to the limited volume of
empirical quantum computing research. Instead, they were retained to ensure thematic
completeness and were interpreted cautiously within the synthesis, rather than being

weighted equally in algorithm performance comparisons.

2.7. Data Extraction

The screening and data extraction process was conducted using Mendeley Reference
Manager (Version 2139.0) for reference management, deduplication, and inclusion-
exclusion tracking; RIS and BibTeX Formats for standardised citation tracking and
exporting and PRISMA (2009) fFor data logging. No Al-assisted screening tools were used.
All screening, data extraction and appraisal activities were performed manually by the

two reviewers to ensure methodological transparency.

Extracted variables included author, publication year, country, quantum algorithm,
quantum algorithm type, drug discovery stage, benefits, benchmark dataset, and reported
limitations. Table 5 shows articles included in the study and their extracted

characteristics.
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Table 5. Characteristics of included studies

Coun- Drug Discov- Algorithm Evaluation
Type Benefits Challenges
try ery Stage Used Metrics
The DAVIS da-
Hybrid
taset achieved
quan- 94-99% accuracy - NISQ noise.
[20] Drug-target 94.21% accuracy,
QSVR tum- gain in DTI predic- - Scalability of
India interaction and the KIBA da-
classi- tion feature mapping
taset achieved
cal
99.99%
Phytopharma
modelling.
-electronic Hybrid
structure pre- quan- Improved complex-
[21] Hybrid simu- - Immature NISQ
diction, tum- interaction model- -
India lation hardware
-network classi- ling
pharmacology, cal
-bioactivity
modelling
accelerated and
-NISQ noise
optimised
Pure - High qubit
[22] - Protein fold-  Grover's algo- search in protein Classical exhaus-
quan- count required
USA ing rithm folding and drug tive search
tum for realistic pro-
discovery model-
teins.
ling
-Simulation of Hybrid - NISQ Hardware.
- Higher precision
ground state quan- - Limited scalabil-
[23] and feasibility of
energy. VQE tum- - Classical MM ity to a Full drug
China quantum-classical
-Pro drug acti- classi- discovery pipe-
integration
vation. cal line.
-Quantum - Quantum hard-
Approximate ware maturity.
- Molecular
Optimisation - Encoding/ rep-
conformation Hybrid
Algorithm - Time-to-target resenting molec-
(creating 3D quan-
[24] (QAOA), Factor reduced ular structures
structures of tum- - QM9 dataset
China - Quantum- (Faster optimisa- complexity
small mole- classi-
inspired Sim- tion) - Experiment is
cules). cal
ulated Bifur- simulated, not
- Optimisation
cation Algo- run on quantum
rithm (SB) hardware.
Quantum
-molecular in- Support Vec- Hybrid
- NISQ Hardware.
teractions tor Machines quan- - Classical SVM
[25] - Noise and error
- Identification (QSVM) tum- improved accuracy and NN algo-
India rates
of drug candi- - Quantum classi- rithms
-Scalability issues
dates. Neural Net- cal

works (QNN)
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Coun- Drug Discov- Algorithm Evaluation
Type Benefits X Challenges
try ery Stage Used Metrics
Hybrid - Generated novel
- De novo mo- quan- molecular struc- - NISQ Hardware
[26] - Classical GAN
lecular gener- QGAN tum- tures with im- - Limited molecu-
China - QED score
ation. classi- proved drug-like- lar complexity
cal ness scores.
Hybrid
- Binding af- - increased speed - NISQ hardware
quan-
[27] finity predic- and accuracy - PBDbind dataset -quantum hard-
Hybrid QML tum-
USA tion. - +6% increased ware error and
classi-
prediction noise
cal
- Noisy quantum
devices
- simulation not
validated on
Hybrid
[28] +30% in druglike- quantum hard-
- Small Mole- quan- - QM9 datasets -
Swit- ness score ware
cule genera- - QGAN tum- - PC9 dataset
zer- -QED score +30% -smaller training
tion classi- - QED
land vs classical GAN datasets with a
cal
small range of
chemical com-
pounds and mo-
lecular structures
- Immature
Hybrid - better classifica-
quantum hard-
quan- tion results with an - HIA datasets-
[29] - ADME-Tox ware
- QSvC tum- AUC ROC of 0.80- CYP2D6 datasets
India prediction -immature quan-
classi- 0.95 across various - DILI dataset
tum software.
cal ADME-Tox datasets
And algorithms.
- Molecular Hybrid
-NISQ noise
energy esti- quan- - greater molecu-
[30] -Molecules simu-
mation VQE tum- lar energy estima- DFT/HF
India lated were from a
- Protein-lig- classi- tion accuracy
small test set
and binding cal

- Improved predic-
- NISQ hardware

Hybrid tive performance.
-Molecular - limited qubit
quan- - EFficient genera-
[311 generation. counts.
QAOA tum- tion of novel mole- - Zinc dataset
USA - Property - Scaling to larger
classi- cules that accu-
prediction. drug-like mole-
cal rately Fill target

cules is difficult.
constraints.

- binding en- Hybrid - Accurate folding
[32] - VQE
ergy simula- quan- and structural - Hartree-Fork - NISQ hardware
India - QAOA
tion tum- analysis
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Coun- Drug Discov- Algorithm Evaluation
Type Benefits X Challenges
try ery Stage Used Metrics
- Structure classi-
analysis cal
- Quantum - Designing qubit
Hybrid GAN/CNN outper- qubit-efficient
- screening quan- formed classical - Classical circuit architec-
[33] - QGAN
- molecular tum- GAN/CNN in terms GAN/CNN ture for data en-
USA - QCNN
generation classi- of accuracy. - VAE coding
cal - No advantage -NISQ noise
over VAE
Hybrid
- Electronic
quan- - higher accuracy -NISQ hardware
[34] structure cal-
VQE tum- with fewer compu- - -Scaling con-
UK culation.
classi- tational resources straints
cal

3. RESULTS AND DISCUSSION

3.1. Publication Trends

Studies on quantum computing in molecular design and drug discovery have shown
steady interest, with the peak period from 2023 to 2024 accounting for 9 of the 15
studies. The year 2024 had the most publications, with five papers accounting for 33% of
the total, followed by 2023, with four publications accounting for 27%. Although the
upward trajectory indicates growing interest in quantum-enabled molecular design, a
slight decline in publications was observed in 2025. Figure 2 shows the number of

publications per year.

2024,n=5

Number of publications

v

2020 2021 2022 2023 2024 2025
Year of publication

Figure 2. Publication Trends
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3.2. Geographic Distribution

At the country level, India contributed the most publications (6), Followed by the United
States of America (4), China (3), and the United Kingdom and Switzerland, each with 1
paper. When grouped by continent, Asia emerges as the leading contributor with nine
studies (60%), driven primarily by India and China. North America fFollows with 4 studies
(26.67%) From the USA, while Europe accounts for two studies (13.33%), contributed by
the UK and Switzerland. Asia’'s dominance in publication output can be attributed to
coordinated national quantum strategies, large-scale public research funding, and strong
integration between academic institutions and government-supported quantum
programmes. In particular, India and the USA lead QC-driven drug discovery due to strong
national quantum initiatives, significant government investment, and ready access to
cloud-based Noisy Intermediate-Scale Quantum (NISQ) hardware from providers such as
IBM and Google. In contrast, other regions, including Africa and Oceania, remain
underrepresented due to limited research funding, restricted access to quantum
hardware, and the absence of dedicated national quantum programmes. Figure 3 shows

the geographic distribution of the 15 studies included in this review.

UK

Switzerland
(1)

(n

India
(6)
China
(3)

us
(4)

Figure 3. Country-wise distribution trends

3.3. Drug discovery stages discussed

The distribution shows that current work is more concentrated in the early stages of
property prediction, discussed 7 times, followed by molecular generation, discussed 5
times and then drug-target interaction, which was discussed 3 times. These tasks are

computationally intensive and the most crucial, making them the Functions that can
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benefit greatly from quantum accuracy and speedup. These Ffindings provide the

empirical foundation necessary to answer Q1, as they reveal where quantum computing
is currently being applied within the drug-discovery pipeline. Figure 4 shows the

frequency of discussion of algorithms.

Property prediction
Molecular generation

Drug-target interaction

Drug discovery stage

Protein folding

Conformation / optimisation

Identification / screening

v

5 1 2 3 4 5 6 7

Frequency of discussion

Figure 4. Drug discovery stages and frequency of discussion

3.4. RQ1: Which stages of the drug discovery pipeline is quantum computing being
applied?
The findings from the synthesis of these 15 empirical studies show that quantum
computing applies to several stages of the drug-discovery pipeline, with the strongest
concentration being early-stage computational tasks. Evidence from Figure 4 shows that
property prediction is one of the stages where QC was applied. Examples include [26],
[27], [28], who estimated properties such as binding affinity and ADME-Tox behaviour. QC
is also applied in drug-target interaction prediction and molecular screening, as shown
by [22], [27], and [33]. Another major area of application is molecular generation, where
quantum generative models are used to explore chemical space and propose new, drug-
like structures, as shown by [33]. In addition, quantum computing contributes to structural
and conformational optimisation shown by [21], [22], [32]. Altogether, these works indicate
that quantum computing is applied across the spectrum of drug discovery stages,
including property prediction, screening/interaction prediction, structural optimisation,

and molecular generation.
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Across the 15 empirical studies, a total of 12 different quantum algorithms were

identified. Figure 5 shows the frequency distribution across all studies, with VQE being
the most widely adopted algorithm, Followed by QAOA and QGAN. This reflects the
dominance of variational algorithms and quantum machine-learning methods. Figure 5

shows the algorithms utilised and their frequency of application.

Frequency of discussion

Hybrid Hybrid
VQE QAOA QGAN QSvM QNN QCNN Qsvc SB Sim QML Grover
Algorithm

Figure 5. Algorithm frequency distribution

Table 6 shows the drug discovery stages discussed and the algorithms utilised in each

stage.
Table 6. Algorithm vs Drug Discovery Stage
Grover
> ° < = > > o o Hybrid Hyb
o 's
52 2 o e 2 z S & & @ % simula rid
o3 & > o o 9 ¢ o O © . Algorit
(=} tion QML
hm
Protein folding V4 N4
Property IV v
- v v v
prediction vy Y
Molecular NN
. v v
generation v
Conformation/opti
v v

misation
Identification/scre

ening
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e
VQE é
==

Grover
> Hybrid Hyb
- S £z %2 2 8 g s
2 o ® S 2 2 & & > o H simue rid .
° 'g @ o o 9 ¢ © o 9 tion QML Algorit

hm
Drug-target
. . v v v v
interaction
Phytopharma
v
modelling

Table 6 maps each algorithm to the drug-discovery stages in which it was applied. The
synthesis shows that VQE is used primarily in property prediction. QAOA similarly appears
in optimisation and property-prediction tasks. Machine-learning-based algorithms (QSVM,
QSVC, QNN, QCNN) are primarily used for screening, classification, and drug-target
interaction prediction, reflecting their application in analysing high-dimensional
molecular descriptors. Generative models such as QGAN dominate molecular generation,
where chemical space exploration is required. Table 7 shows the categorisation of the

types of algorithms used in the empirical studies.

Table 7. Type of Algorithm

Type of algorithm Number of Studies Characteristics

Combines quantum algorithms with

Hybrid 13 classical pre-processing or post-
processing.
Quantum 1 Exclusively pure quantum

Classical algorithms mimicking
Quantum-inspired 1 _
quantum behaviour.

In addition to the distribution of individual algorithms, the analysis of algorithm types
provides insight into how quantum methods are being utilised. Three categories of
algorithms emerged: hybrid quantum-classical, pure quantum, and quantum-inspired.
Hybrid approaches overwhelmingly dominate, with 13 out of 15 studies adopting a hybrid
pipeline. Only one study used a fully quantum algorithm, and one study used a quantum-
inspired method. Hybrid quantum-classical approaches outperform Ffully quantum
models primarily due to current NISQ-era hardware constraints. Classical optimisers

manage error attribution and solution convergence, while quantum circuits address
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combinatorial state exploration. This division compensates for noise levels and limited
qubit counts that otherwise undermine Fully quantum workflows. This suggests that
hybrid quantum-classical approaches maximise the feasible quantum advantage while
remaining operational in the current hardware. Taken together, the algorithm frequency
distribution shown in Figure 5, the alignment of algorithms with specific drug-discovery
tasks shown in Table 6, and the dominance of hybrid algorithm types shown in Table 7
illustrate how quantum algorithms are being practically deployed across the drug-
discovery pipeline. These findings help answer Q2 by explaining the use of quantum
algorithms in the drug discovery process, demonstrating clear patterns in how algorithm
families are matched to task requirements and implemented primarily through hybrid

quantum-—classical workFflows.

3.5. RQ2: How are the quantum computing algorithms utilised within the drug

discovery process?

1) Variational Quantum Eigensolver (VQE)

VQE is a hybrid quantum-classical algorithm that seeks to find eigenvalues, with the
computation workload split between the classical and quantum parts of the
hardware [35]. VQE works by applying a quantum circuit to model the physics and
entanglement of the electronic wavefunction and then optimising the parameters of the
ansatz to minimise this trial energy, constrained always to be higher than the
exact ground state energy of the Hamiltonian, which by virtue of the variational principle
is always greater than or equal to the true ground-state energy of the Hamiltonian [36].
In other words, VQE computes the ground-state energy by minimizing the expectation
value of a quantum circuit. VQE was applied by [23] to simulate the ground-state energy,
and they reported greater precision than classical QM/MM models. [30], estimated
molecular energy using VQE and recorded better accuracy than Density Functional
Theory (DFT) and Hartree-Fock theory (HF). [32], also estimated molecular binding
energies using VQE with higher accuracy than Hartree-Fock (HF). Lastly, [34] calculated
the electronic structure using VQE and Found greater accuracy with lower computational
resources. Overall, VQE achieved better accuracy and precision in DFT/HF molecular

energy calculations.

Charnelle Razo, Belinda Ndlovu | 126



Published By
'Il> AsosiasiDoktor
\“ Sistem Informasi Indonesia

2) Quantum Approximate Optimisation Algorithm (QAOA)

QAOA is a hybrid quantum-classical algorithm For producing approximate solutions for
combinatorial optimisation problems. It aims to maximise the number of satisfied clauses
in max-satisfiability problems or to solve any polynomial, unconstrained, binary
optimisation Formulation. QAOA can find optimal parameters in drug design, such as
identifying the most effective molecular configurations. It identifies low-energy
configurations and optimal molecular conformations. [24] applied QAOA in molecular
conformation and noted Ffaster optimisation because the time-to-target Factor was
reduced for small molecules. [31] applied QAOA in property prediction and noted
increased predictive performance for small molecules. Finally, [32] applied QAOA Ffor
structure analysis alongside VQE for energy estimation and reported efficient, accurate
molecular geometries. Overall, QAOA offers improved predictive performance and
accurate molecular geometry prediction, making it ideal For tasks such as optimisation

and conformational analysis.

3)  Quantum Support Vector Machine (QSVM)

QSVM exploits the parallelism and entanglement property of quantum mechanics to
classify data points into well-defined, distinct categories. [37] reduce the computational
burden associated with separating molecular features, and it applies to predictive models.
[38] applied QSVM to predict molecular interactions and the identification of drug
candidates, noting improved accuracy and scalability compared to classical support
vector machine and neural network algorithms. QSVM can process high-dimensional

molecular descriptors and outperforms classical SVR in prediction tasks.

4) Quantum Neural Networks (QNN)

QNNs represent the crossover of quantum computing with deep learning. Quantum-
enhanced feature spaces enable fast, efficient data operations over quantum datsa,
thereby capturing complex patterns and correlations that are not available to classical
architectures [39]. QNNs to Facilitate the process of target identification, molecular
docking, compound optimisation, protein-ligand interactions, and binding affinity
predictions and speed this process up by exploiting quantum parallelism, entanglement,
and superposition in pattern recognition and simulation of molecules[40]. [25], [38]
integrated a QNN with QSVM Ffor molecular interaction predictions and reported

improved accuracy over classical NN models.
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5)  Quantum Generative Adversarial Network (QGAN)

GANs discover drug candidates by generating molecular structures that satisfy chemical
and physical properties and bind the receptor for the target disease [41]. Quantum GANSs
can offer several opportunities, such as stronger repressibility, learning speedup, the
ability to learn richer representations of molecules, the ability to search exponentially
growing chemical space with increasing qubit count, and the ability to sample from
distributions that may be hard to model classically [41]. As such, [26], [28] achieved novelty
by generating molecules with improved drug-likeness, with [28] reporting a +30% drug-
likeness score. [33] also used QGAN and QCNN to increase accuracy over classical

GAN/CNN For screening and molecular generation.

6)  Grover's Algorithm

Grover's quantum search algorithm provides quadratic acceleration over classical
solutions [42], [43], [44]. Grover's algorithm is applied to search in unstructured data by
scaling the number of search iterations, thereby polynomially accelerating the search
[45]. The unique capabilities of Grover's algorithm were utilised by [22], who accelerated

and optimised protein folding.

7) Quantum Support Vector Classifiers (QSVC)

QSVC elicits patterns in the data by embedding classical inputs into high-dimensional,
complex Hilbert spaces, thereby efficiently producing atypical patterns that could yield
a quantum advantage in training speed, prediction accuracy, and classification [46]. This
algorithm was used by [29] for ADME-Tox prediction, and it was observed that increased
predictive power was achieved, resulting in better classification with an AUC-ROC of

0.80-0.95 across various ADME-Tox datasets.

8) Simulated Bifurcation (SB)
SB is an algorithm that uses parallelism For optimisation problems. [24], [47], [48], have
used QAOA and SB and observed faster convergence of molecules as the time to target

Factor is reduced, hence SB worked in optimising the process.
9) Hybrid Quantum Machine Learning (Hybrid QML)

Integrating classical computing with quantum computing addresses the bottlenecks in

quantum hardware and computationally intensive challenges [49]. Hybrid QML was used
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by [27], and increased speed and accuracy were observed for binding affinity prediction

to gain a +6% increase in prediction over classical methods.

10) Hybrid Simulation
A hybrid QM/MM simulation combines the power of QM with accuracy and MM with speed
For structure-based drug design and calculation of properties in general [50]. In

improving complex interaction modelling, [21] used a hybrid simulation.

1) Quantum Support Vector Regression (QSVR)

QSVR is for property prediction instances, regression tasks with the inclusion of
predicting continuous values, such as binding affinities in drug-target interactions. It
handles high-dimensional data and detects non-linear patterns. QSVR uses the concepts
of quantum computing in conjunction with the classical SVR algorithm. First, it maps
classical features to the quantum feature space to convert the input data into quantum
states; then, quantum kernel computation exploits superposition and entanglement to
accurately measure similarity. QSVR was utilised by [20], and he recorded a gain in

prediction accuracy of 94-99% in drug target interaction.

12) Quantum Convolutional Neural Networks (QCNN)

QCNN will Find the correlation between data by stacking the convolution layer and the
pooling layer. Then, the convolutional layer learns new hidden representations by
combining surrounding pixels, while the pooling layer reduces the size of the feature
map, reducing the computational cost of learning and preventing overfitting. According
to [33], [51] used QGAN and QCNN and noted increased accuracy over classical GAN/CNN

in screening.

13) Categories of the algorithms

Overall, quantum machine-learning classifiers such as QSVM, QSVC, QSVR and QNN play
a central role in early-stage prediction tasks, including screening, drug-target interaction
modelling and ADME-Tox classification. Their advantage lies in quantum-enhanced
feature extraction. Variational algorithms such as VQE and QAOA are used for energy
estimation, conformational optimisation and structural modelling, demonstrating their
suitability for tasks that rely on quantum descriptions of molecular states. Quantum

generative models (QGANSs) enable the exploration of chemical space and the creation of
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novel molecular structures. However, understanding how these algorithms are used also
requires recognising the role of algorithm type, as summarised in Table 7. The dominance
of hybrid quantum-classical approaches indicates that most practical implementations
integrate quantum circuits with classical optimisation or preprocessing, enabling
Feasibility under NISQ hardware constraints. Pure quantum algorithms remain rare, as
shown in this study. One study utilised a pure quantum algorithm, and quantum-inspired
methods serve primarily as scalable approximations. This distribution shows that
algorithm utilisation is shaped not only by computational purpose but also by hardware

maturity.

14) Benefits of QC in drug discovery

Table 8 shows that quantum and hybrid quantum-classical algorithms consistently
improve accuracy, speed, generative novelty, and efficiency in the drug discovery pipeline.
The most frequently reported benefit is improved accuracy, followed by increased
computational speed, enhanced generative novelty for molecule design and greater

efficiency in resource utilisation.

Table 8. Benefits of QC in drug discovery

Ref Algorithm Description Benefit
Improved DTI prediction accuracy by

[20] QSVR Accuracy

94-99%

[22]  Grover's algorithm Accelerated protein folding Speed
More accurate ground state energy

[23] VQE Precision

estimations
[24] QAOA, SB Reduction of time-to-factor Speed
Improved accuracy of molecular Accuracy
[25] QSVM, QNN interactions and drug candidate

identification

Generated molecules with improved
[26] QGAN Novelty
druglikeness

Increased speed and accuracy by 6% Accuracy
[27] Hybrid QML
For binding affinity prediction Speed
+30% druglikeness score in molecule
28] QGAN Novelty

generation
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Ref Algorithm Description BenefFit

Better classification results with an
[29] QsvC Predictive power
AUR ROC of 0.80-0.95

Greater accuracy in molecular energy
(30] VQE Accuracy
estimation and protein ligand binding

Improved predictive accuracy and

Accuracy
[31] QAOA efficiency in molecule generation and
Efficiency
property prediction
Accurate folding and structural
[32] VQE, QAOA Accuracy

analysis

Increased accuracy in screening and
[33] QGAN, QCNN Accuracy
molecular generation

Accuracy
Higher accuracy with fewer Reduced
[34] VQE ) _
computational resources computational
resources

15) Benchmarking

Table 9 summarises the benchmark datasets, and Table 10 shows a comparison against
classical methods. Benchmarking results across the reviewed studies show strong
empirical performance of quantum and hybrid models. Dataset evaluations demonstrate
high predictive accuracy on DAVIS (94.21%) and KIBA (99.99%), enhanced molecule
generation on ZINC, Faster optimisation on QM9 and improved drug-likeness (+30% QED)
and binding-affinity prediction (+6% on PDBbind). ADME-related datasets such as HIA,
CYP2D6 and DILI also reported strong AUC values of 0.80-0.95. Despite the promising
performance, the interpretation of these results is constrained by dataset-related
limitations. Many benchmark datasets, such as QM9 and ZINC, consist of relatively small,
curated, or chemically constrained molecular spaces that may not fully represent real-
world drug-like chemical diversity. Similarly, datasets like DAVIS and KIBA are biased
toward well-studied protein targets, potentially inflating performance estimates and
limiting generalisability to novel or less-characterised targets. ADME and toxicity datasets
often suffer from class imbalance, label noise, and limited experimental validation, which
can affect robustness despite high reported AUC values. These constraints highlight

those current empirical gains, while promising, may not directly translate to large-scale
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industrial drug discovery without further validation on more diverse, noisy, and clinically

representative datasets. Table 10 shows algorithmic performance comparisons between

classical baselines and quantum-enhanced methods.

Table 9. Datasets and their evaluation metrics

Type Description
Dataset Evaluation Metric / Result
DAVIS 94.21% accuracy
KIBA 99.99% accuracy
) Improved predictive performance, efficient molecule
zine generation
QM9 Faster convergence of molecules (optimisation)
QM9 / PC9 +30% improvement in QED score (drug-likeness)
PDBbind +6% improvement in binding affinity prediction
HIA AUC 0.80-0.95 (ADME absorption prediction)
CYP2D6 AUC 0.80-0.95 (enzyme-substrate classification)
DILI AUC 0.80-0.95 (hepatotoxicity)

Table 10. Algorithmic performance comparisons

Type

Description

Method / Baseline

Classical exhaustive search

Classical molecular mechanics

(MM)

DFT / Hartree-Fock

Hartree-Fock (Folding analysis)

Classical GAN / CNN

VAE baseline

Performance Outcome using QC-enhanced methods

Faster, optimised, accelerated search under the

quantum model.

Higher precision using QM/MM

Higher energy-estimation accuracy using QC

models
Accurate folding and structural analysis with QC

QC-based generative and predictive models

outperform classical models.

No advantage over VAE
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Algorithmic comparisons further show that QC-enhanced methods outperform classical

baselines, offering faster, more optimised searches, higher precision than MM and
DFT/HF, improved Folding analysis, and superior generative and predictive capabilities.
Together, these results demonstrate the diverse evaluation strategies used and
consistently highlight QC's potential to improve accuracy, optimisation efficiency and
molecular modelling quality in drug discovery. Quantum approaches outperform classical
baselines largely due to superposition, which enables the simultaneous evaluation of
multiple molecular configurations, and entanglement, which supports the modelling of
complex molecular interactions that classical methods struggle to represent These allow
more expressive molecular-state representations, and this advantage becomes
particularly evident in conformational sampling and molecular energy estimation tasks,

where classical heuristic approximations incur scaling limitations.

Findings from Tables 8, 9, and 10 help answer RQ3 by showing the specific mechanisms
by which quantum computing enhances the identification of novel drug candidates. The
tables present empirical metrics demonstrating improved accuracy, computational

efficiency, and generative capability across the reviewed studies.

3.6. RQ3: How can Quantum Computing enhance the identification of Novel drug
candidates
The evidence from the 15 papers studied shows that quantum computing outperforms
classical methods in improving reliability and expanding the chemical space. Results show
a strong empirical trend of improved predictive power as accuracy is an enhancement
mechanism that occurs eight (8) times. This is shown in studies including [20], who
attained a 94-99% gain in accuracy in drug-target interaction using QSVR, [27], who
attained a +6% increase in the binding affinity prediction using Hybrid QML, [25], who
recorded increased accuracy in molecular interactions and identification of drug
candidates using QSVM and QNN, [30], who attained greater accuracy in molecular energy
estimation and protein-ligand binding over HF/DFT using VQE, [31], who noted improved
predictive accuracy in generated molecules that fit the target constraints, [32], who
attained greater accuracy in protein folding and structural analysis over HF using the
VQE and QAOA, [33], who noted increased accuracy over classical GAN and CNN in
screening and molecular generation, and finally, [34], who attained higher accuracy while

using fFewer computational resources using VQE. Speed is another enhancement

133 | Quantum Computing in Molecular Design and Drug Discovery: A Systematic ...



Published By
II > AsosiasiDoktor
!\ “ Sistem Informasi Indonesia

mechanism that was noted 3 times. [22] accelerated and optimised protein folding using

Grover's algorithm, while [24] used QAOA and SB to reduce time-to-factor, hence Faster
optimisation, and [27] increased speed and accuracy for binding affinity prediction using
Hybrid QML. Algorithms such as QAOA, simulated bifurcation (SB), and Grover's algorithm
demonstrated significant speedups for structural optimisation tasks, while hybrid QML
pipelines improved convergence in affinity-prediction workflows. Such speedups are
particularly relevant to reducing drug discovery timelines. Another enhancement is
increased predictive power, as noted by [31], who conducted an ADME-Tox prediction and
reported better classification results using QSVC, with an AUC-ROC of 0.80-0.95. [23]
attained high precision in the simulation of ground state energy using VQE, and [31]
identified improved efficiency in molecular generation using QAOA. Finally, [36] reduced

computational resources by using VQE to obtain an accurate electronic structure.

Across these 15 studies, quantum models consistently outperformed their classical
variants for the same tasks. Examples include how VQE has repeatedly outperformed
classical quantum-chemistry methods such as DFT and HF in higher-precision molecular-
energy estimates [23], [30], [32]. In generative modelling, QGAN achieves a +30%
improvement in QED score over classical GANs [28], demonstrating a superior ability to
explore chemical space. Analogously, quantum classifiers such as QSVC and QSVM have
outperformed classical SVMs and neural networks in ADME-Tox classification and drug-
target interaction prediction studies, with QSVC achieving AUCs of 0.80-0.95 [29].
Collectively, the evidence shows that quantum computing enhances the identification of
novel drug candidates by improving predictive reliability, speeding up search and
optimisation processes, and enabling the generation of unique, biologically meaningful
molecular structures, thereby extending the scope and speed of early-stage drug
discovery. Moreover, the novelty gains recorded indicate that quantum models can
explore chemical space beyond classical limits, enabling the identification of structurally
unique drug candidates. Most improvements are realised in computation-intensive stages
that depend on scalability, namely molecular conformation and generation, target
interaction, and energy estimation. This is because QC leverages quantum parallelism
towards the evaluation of multiple molecular configurations all at once, superposition to
naturally encode complex electronic states, and entanglement to reduce search

complexity.
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Analysis reveals several limitations, with NISQ challenges related to limited qubit counts
and hardware noise being the most dominant constraints, as identified in all 15 studies.
The second most frequent limitation is Scalability, which was highlighted in 5 studies.
Simulation dependence is another constraint identified in 3 studies [28], [30], [52]. Data
encoding and molecular-representation challenges and dataset limitations, each with 2
mentions, [24], [33] and [28], [30] respectively. Less frequently observed but still relevant
were algorithm/software immaturity, noted by [31], and limited molecular complexity,
noted by [26], each occurring once. These findings help us answer Q4 by identifying the
technological factors that restrict QC's practical integration into drug-discovery
workFlows. Table 11 presents the challenges noted by the authors of the 15 empirical

studies utilised in this study.

Table 11. Author vs challenge

NISQ Data Dataset Simulation Algorithm/ Molecular
Author Scalability .
Hardware Encoding Limitation Dependence Software Complexity

[20] v v
[21]

[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
(301
(31
(32]
[33]

SN N N N S N N S N NN
&
<

[34]
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3.7. RQ4: How do current technological and technical limitations influence the

application of quantum computing in drug discovery?
The reviewed studies clearly show that technological and technical limitations seriously
constrain the application of quantum computing to drug discovery, with NISQ-related
hardware constraints predominating. According to the challenge-frequency analysis, all
15 papers reported issues related to noisy, unstable, low-qubit-count quantum devices.
This universal limitation, noted by authors like [20] and [22], predetermines that
essentially all quantum algorithms used in the current research in drug discovery should
run under the conditions of small coherence time, high error rates, and limited circuit
depth, confining most research to hybrid or simulated environments, rather than actual
quantum processors. The Full quantum advantage thus becomes unrealised. Scalability
remains one of the challenges for the practical application of QML models in drug
discovery. Most evaluations are restricted to relatively small molecular systems, as
increases in molecular complexity significantly raise computational resource
requirements, limiting the Ffeasibility of scalable implementations. Current quantum
algorithms therefore, struggle to scale to larger, drug-like molecules or more complex
biological systems, particularly under constraints imposed by limited qubit availability. As
a result, encoding high-dimensional molecular structures often requires simplified
representations, reducing the ability of model outcomes to generalise to realistic
pharmaceutical scenarios. Collectively, these limitations confine the practical applicability
of quantum computing to small molecules and early-stage tasks, narrowing the range of
drug-discovery problems that can be realistically explored. Another challenge limiting the

application of QC is simulation dependence, as reported by [28], [30], [52].

Many studies rely on simulators since hardware is too noisy or not scalable. Simulation
is useful For prototyping, but it cannot fully reproduce the noise characteristics of real
NISQ hardware. This makes it hard to translate the results into practical application. Data
encoding and representation challenges make translating molecules into qubit
representations very problematic. Most current encoding schemes are unable to handle
large molecular graphs or protein structures, as they require circuit depths well beyond
the reach of NISQ. The dataset limitations limit generalisability, as the datasets used are
small. Algorithmic and software limitations mentioned by [29] identify that gaps in
quantum software maturity lead to unstable or incomplete implementations. Finally,

limitations in molecular complexity noted by [26] indicate that quantum generative
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models often struggle with complex, drug-like structures beyond simple molecules,
limiting the realistic exploration of drug-like chemical space. While the advantages of QC
are clearly evident from the 15 studies, in practice, deploying QC across a complete
pharmaceutical drug discovery pipeline is still in its infancy, as it faces many challenges
related to noise, limited qubit counts, immature hardware, and scalability. These issues
also highlighted research gaps, including the need for scalable systems, simulation
dependability, challenging problems in molecular representation, and NISQ-era challenges

such as decoherence, errors, and limited qubit counts.

3.8. Conceptual Framework

This conceptual framework provides a structured hybrid quantum-classical pipeline that
incorporates the highest-performing quantum algorithms identified in this review. It
addresses one of the key gaps observed, which is the absence of an end-to-end pipeline,
by showing how hybrid quantum-classical algorithms can be used across the drug
discovery pipeline. Figure 6 shows a conceptual framework for a hybrid quantum-

classical drug discovery pipeline.

Algorithm-to-stage linkages were determined based on reported empirical performance
across molecular simulation, screening, and optimisation tasks, with placement guided by
task-specific suitability and demonstrated computational efficiency. These assignments
reflect observed computational strengths, such as accuracy, stability, convergence

efficiency, and scalability, within NISQ constraints.

The process starts with the Target Identification Phase, in which a biological component
responsible for a disease is identified and assessed for druggability using classical
bioinformatics and domain-specific knowledge. Once targets are validated, the workflow
transitions into the Hit/Lead Discovery Phase. In this phase, QSVC performs molecular
screening to classify compounds as favourable or unfavourable based on ADME-Tox
profiles. This classification identifies high-priority molecules to narrow the chemical
search. QSVC was chosen because it excels at precise, accurate classification [53], as
shown by [31], who reported AUC-ROC values of 0.80-0.95 across various ADME-Tox
datasets. De Novo follows to generate novel druglike molecules. QGAN is utilised as it
has empirically shown to produce novel drug-like molecules and expand chemical

diversity. Studies [26], [28], [33] demonstrated effective molecular generation using

137 | Quantum Computing in Molecular Design and Drug Discovery: A Systematic ...



Published By
'Il > AsosiasiDoktor
\“ Sistem Informasi Indonesia

QGANSs, with [28] reporting a +30% improvement in drug-likeness. Quantum Feature

extraction is then performed using VQE to identify descriptors, such as binding potential
and energy estimates. Collectively, this phase aims to generate, screen and characterise
molecules to identify the most promising chemical candidates for optimisation. VQE is
assigned to this stage due to its superior accuracy and precision in molecular energy

calculations compared to classical HF and DFT baselines, as reported in [23], [30], [32].

PHASE 1: TARGET IDENTIFICATION

Classixcal bioinformatics, omics H"E'i,'i S C'ﬁlh.'.a'_\ analysis

‘

PHASE 2: HIT/ILEAD DISCOVERY (QC-ENABLED)

Stage 2 - De Novo Design (QGAN) Stage 3 - Quantum Feature Extraction
Mole peneraton, navel drug-ike (vQe)

Favourable vs unfavowable hits Novel, drug-fike candidates

.

PHASE 3: LEAD OPTIMISATION (QC-ENABLED)

Stage 4 - Structural Optimisation (VQE +  Stage 5 - Property Prediction (Hybrid Stage 6 - DTI Modeling (QSVR)
QAOQA * Grover's) QML) Drug-targe on prediction & rankings

. Energies, stability, reactivity descriptors

on & protein folding  Binding affinity, ADME-Tox and F

coves and rankangs

anked molecules by predicted

PHASE 4: PRECLINICAL VALIDATION (CLASSICAL)

AU O

Docking, molecular dynamics simulations, in vitrofin vivo assays. Experimental feedback refines QSVC, QGAN

Hybrid QML and QSV

FINAL RANKED CANDIDATES

For experimental decision-making and further development

Figure 6. Hybrid Quantum-Classical Drug Discovery Pipeline Framework

The workflow then advances to the Lead Optimisation Phase, whose aim is to refine
molecular structures, enhance predictive accuracy and prioritise the most promising
drug-target interactions For pre-clinical testing. Structural optimisation uses VQE
because VQE provides precise electronic structure and energy refinement [23],[30] and

QAOA which demonstrated faster optimisation and accurate molecular conformation
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prediction in small molecular systems [24],[31] to introduce conformational constraints

that improve molecular recognition by a target receptor, while Grover's algorithm
accelerates searches through protein-folding space [22]. This is Followed by property
prediction using Hybrid-QML to estimate binding affinity, ADME-Tox and
pharmacokinetic behaviours, producing ranked molecular candidates. Hybrid QML is
assigned here due to its demonstrated ability to improve binding affinity prediction, with
[27] reporting a +6% accuracy gain over classical baselines. Drug-target interaction is
carried out to predict the likelihood of a molecule binding to a specific protein target.
This stage employs QSVR to perform regression in a quantum-enhanced feature space
to enhance drug-target interaction prediction, thereby producing quantitative rankings
of candidate-target pairs. QSVR is employed for quantitative drug-target interaction
prediction, as it has been shown to model continuous binding-affinity values in quantum-
enhanced feature spaces effectively, achieving prediction accuracies of 94-99% in drug-

target interaction tasks [20].

Finally, the workflow proceeds to the Preclinical Validation Phase, whose aim is to
experimentally validate predicted candidates and confirm which molecules are viable for
further development. Classical validation methods such as molecular docking, molecular-
dynamics simulations and in-vitro assays evaluate whether predicted binding
interactions, stability and ADME-Tox behaviours hold in practical settings. The Final

ranked candidates proceed for further development.

The classical components of the framework support all quantum-enabled stages.
Classical data preparation curates, cleans and standardises chemical libraries, protein
structures and bioactivity datasets, fFollowed by the computation of descriptors required
For quantum encoding. The orchestration layer coordinates the workflow, schedules
quantum calls and integrates quantum outputs with classical computations. The
validation and feedback module sends top-ranked candidates to docking, molecular
dynamics simulations, and in vitro assays, with experimental results used to retrain and

refine the quantum models.
Implementation of the proposed framework in pharmaceutical R&D should follow a

hybrid deployment strategy that integrates quantum workflows into existing classical

pipelines. Classical infrastructure can support data preparation, feature extraction and
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initial Ffiltering, while quantum algorithms are selectively applied to computationally

intensive tasks such as optimisation, screening and energy estimation. A cloud-accessible
NISQ platform will enable prototyping without requiring in-house quantum hardware. An
orchestration layer should manage data flow and integrate quantum outputs with
classical modelling tools. Experimental feedback from docking, molecular-dynamics
simulations and in vitro assays can then be used to iteratively refine the quantum models

under current hardware constraints.

3.9. Implications

1 Technical Implications

The Findings show that progress in the NISQ era will continue to rely on hybrid systems
rather than fully quantum pipelines as hybrid quantum-classical approaches dominate
current applications. This means that organisations must remain grounded in hybrid
architectures to manage expectations realistically and advance error-corrected
hardware, scalable quantum algorithms, and more expressive molecular-representation
schemes to support end-to-end quantum-integrated drug-discovery pipelines. Second,
the concentration of strong empirical results in molecular generation, property
prediction, structural optimisation, and drug-target interaction indicates that quantum
computing is presently most impactful in computationally intensive, quantum-
mechanically structured tasks. This suggests that pharmaceutical organisations should
prioritise quantum deployment in these bottleneck areas to gain improvements in
accuracy, novelty generation, and predictive reliability, rather than prematurely

attempting Full-pipeline quantum adoption.

2)  Policy Implications

The geographic concentration of studies highlights the need For national research
agencies to establish quantum-ready innovation hubs, hardware-access programmes and
specialised training pipelines to reduce global disparities, particularly in
underrepresented regions such as Africa and South America. Policymakers must also
develop ethical, governance, and data security frameworks to regulate quantum-
generated molecular data and ensure the transparent, responsible use of quantum-

assisted decision tools.
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3)  Industrial Implications

Pharmaceutical companies should integrate quantum resources into existing
infrastructure through hybrid QC-classical pipelines, rather than standalone quantum
models. Organisations should prioritise QC in early-stage bottlenecks, where the review
showed the strongest returns in screening, molecular generation, structural optimisation,

and property prediction.

4)  Limitations of the Study

This study noted several limitations, including a limited database scope of four databases,
which may have omitted relevant studies from other repositories. Second, the study was
limited to English-language papers. Third, the study only utilised empirical papers. Fourth,
out of the 1291 papers, only 15 met the inclusion-exclusion criteria, meaning that all

relevant work was not exhausted.

3.10. Future works

Based on the patterns identified in this review, a number of clear directions emerge for
Future research. First, significant advancements are required in quantum hardware,
particularly in error correction, qubit scalability, and noise mitigation, to enable more
chemically realistic simulations. This includes improving quantum Ffeature encoding,
quantum kernels and hybrid QML architectures. The improvement will strengthen the
ability to encode larger drug-like molecules and enhance scalability. Second, dependence
on simulation must be reduced. Since most studies tested quantum algorithms on
classical simulators due to NISQ limitations, Future work should Focus on experiments on
real quantum hardware, with noise-aware training, error mitigation, and hardware-
specific optimisation to better capture accurate representations of large biomolecules,

protein-ligand systems, and conformational landscapes.

Third, the review identifies a critical absence of standardised benchmarks. Future work
should develop open biomedical quantum datasets and unified benchmarking
frameworks to enable reproducible, comparable, and rigorous assessment of quantum vs
classical methods. Finally, geographic concentration in QC research indicates the need
For broader global participation. Policy initiatives, funding schemes, and quantum
innovation hubs will be essential to expand the discipline beyond its current regional

clusters and ensure equitable scientific progress.
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Overall, while quantum computing has already demonstrated tremendous potential for

the enhancement of accuracy and speed in early-stage discovery tasks, due to
technological constraints, it currently has a limited impact. However, ongoing progress in
hardware, algorithm design, and hybrid integration strategies positions quantum

computing For an increasingly transformative role in the future of drug discovery.

4, CONCLUSION

This systematic literature review analysed 15 empirical studies published between 2020
and 2025 on quantum computing applications in molecular design and drug discovery.
Findings show that QC provides significant benefits in tasks including molecular property
prediction, molecular generation, structural optimisation, and drug-target interaction
prediction with algorithms such as VQE and hybrid QML improving accuracy, novelty
generation, predictive reliability, and computational efficiency. These results demonstrate
that quantum computing enhances existing computational workflows while also
introducing novel generative capabilities that expand the chemical space explored during
drug discovery. Despite these advances, this review identified a clear gap in the current
literature: no study has yet proposed or implemented an end-to-end quantum-integrated
drug discovery pipeline, as existing works remain fragmented and focused on isolated
tasks. To address this gap, this review introduced a conceptual hybrid quantum-classical
framework that synthesises empirical findings and maps validated quantum algorithms
to specific stages of the drug discovery pipeline. The framework provides structured
guidance on how current quantum methods can be realistically deployed under NISQ
constraints, bridging fragmented empirical efforts into a unified, system-level workflow.
However, fully quantum end-to-end drug discovery pipelines remain impractical due to
NISQ-era hardware constraints, including hardware noise, limited qubit, scalability
limitations, and a heavy reliance on workflow simulations. As a result, current
implementations predominantly adopt hybrid quantum-classical approaches rather than
Fully quantum workflows. Future research should therefore prioritise the development
of error-corrected and fault-tolerant quantum hardware, scalable and qubit-efficient
quantum algorithms, improved molecular encoding strategies, and large-scale validation
on real quantum devices beyond simulation environments, as these represent key
milestones for enabling practical end-to-end quantum pipelines. This review, therefore,

concludes that while quantum computing holds strong potential to accelerate early-stage
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drug discovery, its broader impact will be realised progressively as these hardware and
algorithmic milestones are achieved, with hybrid quantum-classical architectures
remaining the most practical pathway for integrating quantum computing into

pharmaceutical R&D.
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