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Abstract: Fifth-generation (5G) networks face escalating security 

challenges driven by decentralised architectures, stringent ultra-

low-latency requirements, and rapidly evolving threat landscapes. 

Agentic Artificial Intelligence (agentic AI) autonomous systems that 

perceive network conditions, decide on countermeasures, and act 

in real time offers a promising route toward adaptive defence. This 

systematic review examines how agentic AI is being applied to 

detect and mitigate threats within 5G networks. Following PRISMA 

2009 guidelines, four databases (IEEE Xplore, ACM Digital Library, 

SpringerLink, and ScienceDirect) were searched, yielding 22 eligible 

peer-reviewed studies published between 2020 and 2025, selected 

for explicit 5G relevance and empirical evaluation. The reviewed 

evidence clusters into four primary security areas: anomaly 

detection, DDoS mitigation, network slicing security, and intrusion 

detection. Across these domains, approaches based on federated 

learning, deep reinforcement learning, and multi-agent systems 

generally report stronger detection performance and/or more 

adaptive response behaviour than conventional, reactive baselines, 

while supporting privacy-preserving intelligence at the edge. 

However, key deployment barriers remain: 86% of studies rely on 

simulation-based validation, scalability beyond 100 nodes is 

insufficiently characterised, and reported coordination delays (120–

180 ms) may conflict with 5G latency constraints in time-critical 

settings. To consolidate findings, this review proposes a 

Perception–Decision–Action–Feedback conceptual framework and 

highlights priorities for real-world validation and deployment-

oriented evaluation. 

Keywords: Agentic Artificial Intelligence; 5G Networks; Threat 

Detection; Autonomous Agents; Reinforcement Learning  
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1. INTRODUCTION 

 

The fifth generation (5G) of mobile networks marks a substantial shift in wireless 

communications, enabling enhanced mobile broadband (eMBB), ultra-reliable low-latency 

communications (URLLC), and massive machine-type communications (mMTC) [1], [2]. At 

the same time, 5G is not merely a faster radio interface; it is a re-architected, software-

intensive ecosystem. The adoption of software-defined networking (SDN), network 

functions virtualisation (NFV), multi-access edge computing (MEC), and network slicing 

has made network services more programmable and scalable, but it has also widened the 

attack surface across both the radio access network (RAN) and the core network [2], [3]. 

In practice, these capabilities introduce additional trust boundaries, increase inter-

component dependencies, and create more operational complexity—conditions that 

adversaries can exploit through misconfigurations, compromised virtualised functions, 

slice-level abuse, or attacks that target the edge where decisions must be made rapidly. 

 

In this study, Agentic Artificial Intelligence refers to autonomous, goal-directed 

computational agents capable of perceiving their environment, making independent 

decisions, executing adaptive actions, and continuously improving through feedback—

either individually or cooperatively within multi-agent systems [4]–[6]. This framing 

differs from traditional reactive AI models that mainly identify patterns and raise alerts 

after suspicious behaviour is observed. Instead, agentic AI emphasises iterative 

perception–decision–action loops, enabling systems to adjust behaviours in response to 

changing conditions and adversarial tactics. Such characteristics are particularly relevant 

in 5G contexts where security controls increasingly operate at the edge and must 

respond under strict latency constraints, fluctuating traffic, and mobile user behaviour 

[7], [8]. 

 

However, conventional machine learning (ML)-based security solutions often struggle to 

keep pace with the dynamic characteristics of 5G networks [9]. Large-scale surveys in 

[10]–[12] suggest that while ML can improve detection performance, many approaches 

remain predominantly reactive, with limited capacity to adapt to evolving network states, 

mobility patterns, or adaptive adversaries. Further studies [13]–[15] reinforce this concern 

by showing that robustness is frequently compromised under realistic 5G conditions, 
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particularly at high mobility and at scale, where massive connectivity and heterogeneous 

devices amplify both uncertainty and attack opportunities. 

 

Despite notable progress in intelligent security for 5G, the literature continues to exhibit 

several gaps that constrain the development of genuinely autonomous and adaptive 

defence mechanisms. First, the research landscape remains fragmented: studies in [10]–

[12] largely focus on applying traditional ML techniques to 5G security problems, while 

[13], [16] explore federated learning but often within isolated or narrowly scoped 

scenarios. Across these bodies of work, there is limited evidence of holistic integration 

into end-to-end security systems that behave autonomously and adapt continuously 

across the full 5G stack. Second, there is a lack of agentic synthesis. Only a small subset 

of studies explicitly addresses how autonomous agents perceive, decide, act, and adapt 

under adverse 5G conditions—particularly when distributed decision-making, 

coordination across edge and core, and multi-domain visibility are required. Third, much 

of the evidence base remains simulation-driven, with limited empirical validation of 

deployment feasibility, scalability, and adversarial robustness under operational 

constraints. Finally, theoretical integration is often incomplete: existing work does not 

consistently unify agentic AI’s specific role in autonomous 5G security. For example, [17] 

examines ML for ICT security, [11] covers AI for 5G security, [14] discusses wireless security, 

and [16] focuses on reinforcement learning for network security, yet these perspectives 

are rarely consolidated into a coherent framework centred on agentic autonomy, 

adaptive action, and distributed decision-making. 

 

To address these gaps, this systematic literature review compiles and synthesises 

empirical studies that specifically investigate agentic AI approaches for detecting and 

mitigating threats within the 5G networking framework. The review examines how 

autonomous agents perceive network conditions, make decisions, execute actions, and 

incorporate feedback in 5G environments, with the goal of integrating empirical findings 

with pre-existing theoretical foundations to develop a holistic understanding of the 

current state of agentic AI for autonomous 5G security. 

 

Accordingly, this research is guided by the following research questions: 

1) What are the specific application areas and security threats that agentic AI 

addresses in 5G networks? 
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2) Which AI algorithms and architectural models are currently deployed for 5G 

threat detection and mitigation, and what are their comparative strengths and 

limitations? 

3) What empirical, methodological, and operational gaps persist in the current 

literature regarding scalability, adversarial robustness, and real-world 

deployment feasibility? 

 

2.  METHODS 

 

The study used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

(PRISMA 2009) framework. This ensures transparency, reproducibility and methodological 

rigour [18], [19]. To collectively minimise biases and support evidence-based synthesis, 

PRISMA divides the review into four sequential phases: Identification, Screening, Eligibility 

and Inclusion [20]. 

 

2.1. Identification 

Four major digital libraries were selected for their comprehensive coverage of computer 

science and telecommunications literature: IEEE Xplore, ACM Digital Library, SpringerLink, 

and ScienceDirect. A master Boolean expression captured the three conceptual domains 

of this review: Agentic AI, Threat Detection and Mitigation, and 5G/B5G networks. Table 1 

presents the complete search string structure with domain-specific keywords. 

 

Table 1. Search String Components 

Domain Keywords Rationale 

Agentic AI 

"agentic AI" OR "autonomous AI" 

OR "multi-agent system" OR 

"intelligent agent" OR "cognitive 

agent" 

Captures various terminologies for 

autonomous systems exhibiting 

agency, goal-oriented behavior, 

and adaptive decision-making 

Threat 

Detection & 

Mitigation 

"threat mitigation" OR "attack 

mitigation" OR "security threat 

response" OR "threat detection" 

OR "intrusion detection" 

Covers both proactive threat 

identification and reactive 

mitigation responses 
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Domain Keywords Rationale 

5G/B5G 

Context 

"5G" OR "5th generation" OR 

"fifth generation" OR "5G 

network" OR "beyond 5G" OR 

"B5G" 

Ensures focus on fifth-generation 

and beyond networks, excluding 

legacy technologies (4G, Wi-Fi) 

 

2.2. Complete Search String: 

The following search string was developed to identify studies at the intersection of 

agentic (autonomous) AI approaches, security response/mitigation, and 5G networking: 

 

(("agentic AI" OR "autonomous AI" OR "multi-agent system" OR "intelligent agent" OR 

"cognitive agent") AND ("threat mitigation" OR "attack mitigation" OR "security threat 

response") AND ("5G" OR "5th generation" OR "fifth generation" OR "5G network")). 

 

This query was tailored to meet the functionality and syntax requirements of each 

database. For IEEE Xplore and the ACM Digital Library, the search was executed across 

the title, abstract, and keyword fields to improve precision and reduce irrelevant retrieval. 

For SpringerLink and ScienceDirect, the complete search string was applied, with results 

constrained to the subject areas of computer science and engineering to maintain topical 

relevance. Across all databases, the search period was restricted to 2020–2025, reflecting 

the timeframe associated with the rollout and early deployment of 5G networks. 

Additional filters were applied to include only English-language, peer-reviewed journal 

articles and conference papers. 

 

To enhance methodological rigour, the search strategy underwent PRESS (Peer Review 

of Electronic Search Strategies) evaluation [20] and was further reviewed by the 

supervising lecturer prior to execution. The final searches were conducted between 24 

and 31 October 2025. In total, 792 records were retrieved: IEEE Xplore (28), ACM Digital 

Library (373), SpringerLink (156), and ScienceDirect (235). Following automated and manual 

deduplication in Mendeley, 781 unique records remained for screening. 

 

2.3. Inclusion and Exclusion Criteria 

Table 2 summarises the inclusion and exclusion criteria applied during the screening 

stage. These criteria were designed to ensure that only studies directly relevant to 
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agentic (agent-based) AI for threat detection and mitigation in 5G (and beyond-5G) 

environments were retained, while excluding works outside scope or lacking agentic 

autonomy. 

 

Table 2. Inclusion and Exclusion Criteria 

Inclusion Criteria (Studies Were Included If 

They …) 

Exclusion Criteria (Studies Were 

Excluded If They …) 

1. Addressed Agentic / Agent-Based Ai Within 

5G OR B5G Networks 

1. Focused On Non-5g Technologies 

(E.G., 4g, Wi-Fi) 

2. Published Between 2020 and 2025 
2. Applied Generic ML Models Without 

Agentic Features 

3. Reported Empirical Or Conceptual Work On 

Threat Detection/Mitigation 

3. All Papers That Were Non-Empirical 

(Position Papers, Editorials) 

4. Peer-Reviewed Journals Or Conference 

Proceedings 

4. Grey Literature Or Non-English 

Sources 

 

The screening rules prioritised studies that explicitly incorporated agentic 

characteristics—such as autonomous decision-making, environmental sensing, goal-

directed behaviour, adaptive action selection, or cooperative multi-agent coordination—

within 5G security contexts. This emphasis ensured that included studies went beyond 

conventional predictive or reactive ML models and instead reflected the capacity for 

independent, action-oriented security responses. The timeframe of 2020–2025 was 

selected because it aligns with the period of broad 5G rollout and the emergence of 

related security research. Finally, restricting the corpus to English-language, peer-

reviewed journal and conference publications helped maintain research quality and 

methodological reliability by focusing on work that has undergone formal scholarly 

review. 

 

2.4. Screening and Eligibility 

 

The 781 unique records were screened at the title and abstract level against the pre-

defined inclusion and exclusion criteria. Studies were excluded at this stage for several 

recurring reasons, including the absence of agentic or agent-driven AI features (e.g., no 

autonomous perception–decision–action capability), lack of a 5G or beyond-5G 
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networking context, publication types outside the scope of primary research (such as 

commentaries, editorials, or secondary reviews), and sources that did not meet the 

language and publication requirements (e.g., non-English papers or unpublished/grey 

literature such as technical reports). Following this initial screening, 22 articles were 

retained for full-text assessment. 

 

To strengthen screening consistency and minimise selection bias, two independent 

reviewers assessed each title and abstract. Inter-rater agreement was quantified using 

Cohen’s Kappa coefficient, yielding a value of 0.87, which indicates a high level of 

reliability between reviewers. 

 

All 22 studies assessed at the full-text stage met the eligibility requirements. Specifically, 

each study addressed agentic AI within a 5G (or beyond-5G) setting, reported empirical 

security-related work on threat detection and/or mitigation, and was published in peer-

reviewed journal articles or conference proceedings between 2020 and 2025. 

 

2.5. Quality Assessment 

Every study was checked with a 5-level scale borrowed from [21] alongside [22]. This 

assessment evaluated methodological rigor, relevance to the research questions, and the 

quality of empirical validation rather than serving as an exclusion mechanism. Table 3 

presents the quality assessment dimensions and scoring criteria. 

 

Table 3. Quality Assessment Criteria 

Dimension Scoring Criteria Weight Rationale 

AGENTIC AI 

RELEVANCE 

1.0 = Strong demonstration of 

agentic characteristics (autonomy, 

adaptivity, goal-orientation) 

0.5 = Partial agentic features (e.g., 

adaptive but not autonomous) 

Ensures alignment with 

review, focusing on truly 

agentic systems 

5G/B5G CONTEXT 

1.0 = Explicitly designed for 

5G/B5G networks with 5G-specific 

features 

Verifies relevance to 5G-

specific security 

challenges 
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Dimension Scoring Criteria Weight Rationale 

0.5 = Generic approach applied to 

5G context 

METHODOLOGICAL 

CLARITY 

1.0 = Fully transparent 

methodology enabling 

reproducibility 

0.8 = Mostly transparent with 

minor ambiguities 

0.6 = Partially clear with significant 

gaps 

Assesses reproducibility 

and methodological rigor 

THREAT FOCUS 

1.0 = Threat detection/mitigation 

as primary objective 

0.5 = Threat handling as secondary 

consideration 

Ensures centrality of 

security focus to review 

scope 

EMPIRICAL 

VALIDATION 

1.0 = Real-world deployment or 

operational testbed 

0.8 = Network emulation with 

realistic parameters 

0.6 = Simulation-based validation 

Evaluates empirical 

evidence quality and 

generalizability 

Description: Scoring interpretation is the maximum score is 5.0. The minimum inclusion 

threshold is 3.5, as scores below that indicate insufficient methodological rigour, unclear 

agentic characteristics, or minimal empirical validation. 

 

Some studies scored low on validation, indicating a disconnect between simulated 

settings and real-world use, as seen in RQ3. Still, those results helped shape our 

interpretation of the overall picture. A few had weaker design descriptions, which made 

replication more difficult; this was flagged per dimension three ratings. Even so, every 

paper met the minimum threshold, with scores above 3.5. Scores ran from 3.7 up to 4.8, 

averaging 4.2 with little spread (SD 0.3). This suggests that most of the work was well 

established and clearly focused on agentic AI. The quality assessment scores for all 22 

studies are presented in Table 4. 
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Table 4. Quality assessment scores 

Paper Agentic AI 5G Context Methodology Threat Focus Validation Total 

P1 1 1 1 1 0.8 4.8 

P2 1 1 0.8 1 0.6 4.4 

P3 1 1 0.8 1 0.6 4.4 

P4 1 1 1 1 0.6 4.6 

P5 1 1 1 1 0.6 4.6 

P6 1 1 0.8 1 0.6 4.4 

P7 1 1 0.6 0.5 0.6 3.7 

P8 1 1 1 1 0.6 4.6 

P9 1 1 0.8 0.5 0.6 3.9 

P10 1 1 0.8 0.5 0.6 3.9 

P11 1 1 0.8 0.5 0.6 3.9 

P12 1 1 1 0.5 0.6 4.1 

P13 1 1 1 0.5 0.6 4.1 

P14 1 1 0.8 1 0.6 4.4 

P15 1 1 1 0.5 0.6 4.1 

P16 1 1 0.8 0.5 0.6 3.9 

P17 1 1 0.8 1 0.8 4.6 

P18 1 1 0.8 1 0.6 4.3 

P19 1 1 0.6 0.6 0.6 3.8 

P20 1 1 1 1 0.8 4.8 

P21 1 1 0.8 1 0.6 4.3 

P22 1 1 1 1 0.6 4.6 

 

2.6. Inclusion  

Following completion of all PRISMA screening stages, 22 peer-reviewed studies were 

retained for inclusion in the review and subsequently subjected to qualitative and 

quantitative synthesis. Figure 1 presents the PRISMA flow diagram, detailing the number 

of records identified, screened, assessed for eligibility, and included, as well as the 

reasons for exclusion at each stage. 
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Figure 1. Prisma Flow Diagram 

 

3. RESULTS AND DISCUSSION 

 

The 22 included studies collectively demonstrate a growing—yet still early-stage—

research landscape on the use of agentic AI to detect and mitigate security threats in 

5G and beyond-5G (B5G) networks. Across the corpus, agentic AI is typically 

operationalised through autonomous decision-making loops (perception–decision–

action), often implemented using reinforcement learning, federated learning, or multi-

agent coordination. While the studies vary widely in scope and maturity, they consistently 

reflect a common motivation: conventional, largely reactive security analytics struggle to 
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cope with the scale, mobility, heterogeneity, and programmability that characterise 

modern 5G architectures. 

 

3.1. Summary of Included Studies 

The included studies exhibit substantial diversity in publication venue, methodological 

design, and the specific agentic capabilities emphasised. Some contributions prioritise 

autonomy and goal-directed behaviour for slice security and orchestration, while others 

focus on environmental perception and adaptive action in fast-changing threat scenarios 

such as DDoS, jamming, or encrypted traffic abuse. Table 3 synthesises each paper’s core 

attributes in a structured form, summarising the agentic features reported (e.g., 

autonomy, adaptivity, perception, and multi-agent behaviour), the primary security focus, 

the underlying AI model or architecture, the associated 5G/B5G context, and the key 

limitations that constrain generalisability or real-world applicability. 

 

Table 3. Included studies on Agentic AI for threat detection in 5G Networks 

ID Ref 
Agentic 

features 

Security 

focus 

AI model / 

architecture 

5G 

context 

Key contribution 

(short) 

Main 

limitation 

P1 [23] Au, Go, Ac 
Anomaly 

detection 

Federated 

Learning + 

policy engine 

B5G; 

distribute

d FL 

Scalable 

orchestration 

framework for FL-

based anomaly 

detection 

Scalability 

evaluation 

limited 

P2 [24] Au, Go 

Slice 

isolation; 

anomaly 

detection 

FL + DNN 

5G 

network 

slicing 

Secure slicing 

architecture using 

FL-enabled 

detection 

Simulation-

only 

P3 [25] Au, Pe 
DDoS 

mitigation 

Deep Q-

Network 

(DQN) 

SDN in 

5G 

RL agent enables 

adaptive DDoS 

response actions 

Limited 

attack 

coverage 

P4 [26] Au, Go, Ac 
Intrusion 

detection 
Dueling DQN 

5G/B5G 

wireless 

DRL-based IDS 

tailored for 

wireless 

conditions 

Limited 

scalability; 

single-agent 

focus 

P5 [27] Au, Pe, Ac 

Cyberattac

k detection 

(O-RAN) 

FL with 

distributed 

agents 

B5G; O-

RAN 

FL framework 

supporting B5G/O-

RAN security 

analytics 

Simulation-

based; no 

deployment 

validation 
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ID Ref 
Agentic 

features 

Security 

focus 

AI model / 

architecture 

5G 

context 

Key contribution 

(short) 

Main 

limitation 

P6 [28] Au, Go, Ac 
IIoT 

intrusion 

FL + GRU-

based DRL 

IIoT over 

5G 

Combines DRL + 

FL for federated 

IIoT intrusion 

detection 

IIoT-specific; 

limited 

generalisabili

ty/attack 

breadth 

P7 [29] Au, Pe, Ac 
Jamming 

mitigation 

Federated 

DRL (FDRL) 

5G 

HetNets 

Federated DRL 

mitigates dynamic 

jamming in 

HetNets 

Federated 

coordination 

complexity 

underexplore

d 

P8 [30] Au, Go 

Slice 

security; 

isolation 

Asynchronou

s FL 
5G slicing 

Async FL improves 

responsiveness & 

privacy of slice 

policies 

Simulation-

only 

P9 [31] Au, Ac 
Slicing 

security 

CNN-based 

DL 

framework 

5G/B5G 

slicing 

DL framework to 

protect slicing 

mechanisms 

No agent 

coordination; 

limited 

online 

learning 

P10 [32] 

Au, Go, 

Pe, Ac, 

MA 

QoS-driven 

slice 

optimisatio

n (resource 

protection) 

Federated 

MARL (DDPG 

+ FedAvg) 

LoRa/5G 

slicing 

Multi-agent 

federated RL 

optimises 

QoS/isolation 

LoRa setting 

limits direct 

mapping; 

security is 

secondary 

P11 [33] Au, Go, Ac 

Slice 

optimisatio

n; load 

balancing 

Federated 

LSTM 

5G slicing 

+ RAN 

Fed-LSTM 

improves slice 

load prediction for 

management 

Limited 

attack 

modelling; 

optimisation-

centric 

P12 [34] Au, Pe, Go 

Slice 

isolation; 

anomaly 

detection 

FL 

framework 

5G slicing 

security 

FL-based anomaly 

detection to 

strengthen slice 

security 

High-level; 

limited 

deployment 

details 

P13 [35] 
Au, Go, 

Ac, MA 

Resource 

allocation; 

QoS 

assurance 

MARL 

5G V2X; 

vehicular 

slicing 

MARL for resource 

allocation 

(security treated 

implicitly) 

Security 

treatment 

minimal 
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ID Ref 
Agentic 

features 

Security 

focus 

AI model / 

architecture 

5G 

context 

Key contribution 

(short) 

Main 

limitation 

P14 [36] Au, Go 

DDoS / 

flash 

events 

MARL 

(MADDPG) 

5G-

enabled 

SDN-IoT 

MADDPG applied 

for attack 

detection/respons

e in SDN-IoT 

Scalability 

unclear 

P15 [37] Au, Go, Ac 
Cyberattac

k detection 

P2P 

Federated 

Learning 

B5G 

protectio

n 

(distribut

ed) 

Peer-to-peer FL 

for distributed 

protection 

Simulation-

only 

P16 [38] Au, Go, Ac 
Slice 

security 

Two-layer FL 

+ mean-field 

game 

5G slicing 

FL + game theory 

for adversarial 

slice protection 

Controlled 

simulations; 

limited large-

scale 

validation 

P17 [39] 
Au, Ac, 

MA 

General 

cyber 

defence 

MARL 

(DDPG/TD3 

variants) 

Cyber-

range 

(CAGE), 

not 5G-

specific 

Shows MARL 

potential vs 

coordinated 

attacks 

Highly 

simulation-

centric; not 

5G-grounded 

P18 [40] Au, Go, Ac 

Honeypot 

deploymen

t; 

deception 

RL (Q-

learning) 

Ultra-

dense 

B5G 

Strategic 

honeypot 

placement to 

maximise attacker 

engagement 

Simulation-

only; limited 

real-world 

testing 

P19 [41] Au, Pe 

IoT 

intrusion 

detection 

(roadmap) 

Conceptual 

DL/ML 

framework 

IoT–5G 

converge

nce 

Roadmap unifying 

AI intrusion 

techniques for 

IoT–5G 

Conceptual 

only; no 

implemented 

model 

P20 [42] Au, Pe, OL 

Encrypted 

DNS (DoH) 

threat 

detection 

DFL + 

incremental 

learning 

(SVM/RF/LR/

DT) 

B5G 

privacy-

preservin

g 

detection 

Detects DoH 

tunnelling while 

preserving privacy 

Simulation-

only; 

possible 

real-time 

overhead 

P21 [43] Au, Ac 

DDoS 

mitigation 

+ QoS 

DRL (DQN) 

5G SDN-

enabled 

networks 

Balances DDoS 

defence with QoS 

for benign users 

Simulated 

traffic; 

limited 

hybrid-attack 

evaluation 
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ID Ref 
Agentic 

features 

Security 

focus 

AI model / 

architecture 

5G 

context 

Key contribution 

(short) 

Main 

limitation 

P22 [44] Au, Ac, OL 

DDoS 

mitigation 

(V2X) 

DQN 5G V2X 

RL defence for 

vehicular edge 

DDoS mitigation 

Synthetic 

data; needs 

real-world 

validation 

 

Taken together, the studies reflect four dominant technical paradigms: federated 

learning (FL) for privacy-preserving and distributed security analytics (e.g., slice 

protection and anomaly detection), deep reinforcement learning (DRL) for adaptive 

response under changing attack conditions (e.g., DDoS or jamming), multi-agent 

reinforcement learning (MARL) for coordinated decision-making in distributed 

environments (e.g., SDN-IoT or V2X settings), and hybrid approaches that integrate FL 

with deep learning, DRL, or game-theoretic formulations to strengthen robustness and 

strategic behaviour. Notably, although these paradigms align well with the autonomy and 

adaptivity requirements of 5G security, most evaluations remain simulation-heavy, with 

comparatively limited evidence of large-scale deployment feasibility, cross-domain 

interoperability, and adversarial robustness under real operational constraints. 

 

3.2. Descriptive Analysis of Reviewed Studies  

This section presents a descriptive analysis of the 22 included studies, focusing on 

publication trends and how research attention has evolved over time. 

 

1) Temporal Distribution 

Figure 2 illustrates the year-by-year publication distribution of the included papers and 

highlights a clear upward trend in scholarly interest in agentic AI for 5G security. The 

temporal pattern suggests that the topic has moved from an emerging niche to a more 

established research direction within a relatively short period, aligning with the broader 

maturation of 5G deployments and the parallel shift toward more autonomous, software-

driven network operations. 

 

Figure 2 derivation: publication counts extracted from 22 studies meeting inclusion 

criteria, showing year-by-year distribution from 2020-2025 database searches. Thus, the 

first one appeared in 2020, right around the time 5G started rolling out commercially. 

After that, the number of publications began to increase: 2020 had 2, then 1 in 2021, 
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followed by 4 in 2022, 5 in 2023, peaked at 7 in 2024, and finally 3 in 2025. That peak in 

2024 suggests researchers are now more involved in applying Agentic AI to security 

systems for next-generation networks. 

 

 
Figure 2. Number of Studies by Publication Year 

 

2) AI Models and Architectures 

Figure 3 summarises the dominant AI paradigms adopted across the reviewed studies 

and groups them into four categories: Federated Learning (FL), Deep Reinforcement 

Learning (DRL), Multi-Agent Reinforcement Learning (MARL), and hybrid architectures that 

combine FL with complementary techniques such as game theory or deep learning. This 

categorisation provides a high-level view of how researchers are operationalising 

“agentic” behaviour in 5G security settings—either through distributed training and 

privacy-preserving collaboration (FL), adaptive sequential decision-making (DRL), 

coordinated multi-entity control (MARL), or integrated frameworks that aim to balance 

multiple requirements such as robustness, privacy, and strategic response. 
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Figure 3. Number of AI approaches in reviewed studies 

 

Figure 3 derivation: Studies were classified according to the primary AI paradigm 

described in their methodology sections. Where a study employed multiple approaches 

(e.g., FL combined with DRL or game-theoretic components), it was counted in each 

relevant category. The distribution indicates a strong preference for distributed and 

decentralised learning paradigms, reflecting the architectural realities of 5G and B5G 

environments where data and control are often dispersed across edge nodes, slices, and 

heterogeneous domains. Federated Learning emerged as the most frequently adopted 

approach, appearing in 10 studies, suggesting that privacy preservation and distributed 

model training are central design priorities for many 5G security solutions. Deep 

Reinforcement Learning followed with 5 studies, highlighting the relevance of adaptive 

decision-making for dynamic threat response (e.g., DDoS mitigation or policy selection). 

Multi-Agent Reinforcement Learning was observed in 4 studies, reinforcing the need for 

coordinated autonomy in distributed settings such as SDN-enabled domains or vehicular 

networks. Finally, 3 studies used hybrid architectures (e.g., FL integrated with game theory 

or deep learning), reflecting efforts to overcome the limitations of single-paradigm 

approaches and further underscoring the overall shift toward decentralised intelligence 

rather than purely centralised security control. 
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3) Security Focus Area 

Figure 4 shows the percentages of the area of focus in the papers regarding security. 

Network slicing, 32% of the studies focused on interslice isolation, resource allocation 

fairness and slice-specific throughput detection. Intrusion detection was prioritized in 

27% of the studies, focusing on high-throughput 5G traffic, while the other 18% focused 

on DDoS mitigation mechanisms to preserve quality of service. Anomaly detection and 

specialised applications such as jamming and encrypted traffic detection accounted for 

14% and 9%, respectively. The strong focus on network slicing intrusion detection reflects 

5G-specific attack surfaces, with features such as slice isolation and disaggregated RAN 

interfaces absent in legacy networks. Figure 4 derivation: Secure focus extracted from 

study objective and experimental scenarios, classified by primary application area. 

 
Figure 4. Security focus distribution 

 

4) Agentic Characteristics 

Figure 5 shows that agentic characteristics are widely distributed across the studies. The 

selection criteria ensured that all selected studies had the core characteristics of Agentic 

AI. Autonomy was the principle of all the papers, so it was universal with 100 %. Adaptivity 

was a very close second, as all the agents were able to modify defences based on 

environmental feedback. Goal orientation was explicitly defined in [26] as maximising 
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detection accuracy and minimising false positives. [25] shows how environmental 

perception varied from simple traffic volume monitoring to multidimensional state 

representations incorporating slice health and historical attack patterns [32]. Two studies 

[31], [40] demonstrated weaker environmental perception, relying primarily on pre-trained 

models with limited runtime adaptation, though they still qualify as agentic due to their 

autonomous decision-making capabilities. Figure 5 derivation: Studies evaluated against 

four agentic characteristics identified from methodology description and architectural 

specifications. 

 

 
Figure 5. Prevalence of Agentic Features Across Studies 

 

5) Deployment Contexts 

Figure 6 shows the different deployment contexts identified across the studies. For the 

deployment and network layers, the core 5G architecture accounted for 68.2%, with 

specific attention to beyond 5G and Open RAN at 31.8%, reflecting anticipation of future 

network evolution. Diversity in AI applications across specialised fields such as vehicular 

V2X  networks covered by [35], [44] and ultra-dense deployment [38] demonstrates the 

agentic AI applicability from automation to intelligent transport systems. Figure 6 

derivation: Deployment context extracted from experimental setups and target 

infrastructure specifications. 
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Figure 6. Deployment Context network layers 

 

6) Evaluation Methodologies 

Figure 7 shows the different percentages of the paper distribution across the studies, 

highlighting a critical validation gap. 86.4% of the papers are simulations, with 9.1% from 

network Emulation and 4.5% with limited real-world testing. This large percentage 

highlights the critical gap between theoretical and operational deployment, which 

represents a fundamental limitation affecting generality. The near-complete absence of 

operational validation fundamentally constrains claims about real-world performance. 

Figure 7 derivation: Evaluation methodology classified from experimental design sections: 

simulations (synthetic traffic, controlled environments), emulations (software network 

replication), and real-world (operational infrastructure deployment). 
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Figure 7. Evaluation Methodologies 

 

The next section discusses the research questions and how they align with the review's 

findings. 

 

3.3. What are the specific application areas and security threats that agentic AI 

addresses in 5G networks? 

According to the studies, agentic AI was applied in four dominant areas: (1) network 

intrusion and anomaly detection, (2) DDoS detection and mitigation, (3) network slicing 

security, and (4) physical layer and specialised threats. A critical analysis of the papers 

reveals inconsistencies between performance reports and real-world feasibility. 

 

1) Intrusion and Anomaly Detection 

Anomaly detection has been widely explored across several studies, including [23], [24], 

[34], which identify unusual network behaviours. At the same time [26]–[28], [41], [42] are 

intrusion detection systems that address unauthorised access. Despite being tested in 

simulated, controlled, and simplified threat models, it still achieves detection accuracies 

of 94.8% to 97.3%. The critical limitations of these studies include the use of legacy 

datasets, such as using a 2009 benchmark predicting virtualised network function, slice 

isolation violation and Open RAN exploitation. DRL-based IDS [26] achieved 96.7% 

accuracy on the NSL-KDD dataset. [27] made use of federated learning for OpenRAN to 
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address disaggregated RAN interfaces but lacked O-RAN Alliance validation. Furthermore, 

[28] used a GRU-based federated DRL approach to achieve 97.2% accuracy in intrusion 

detection, but acknowledged the need for simulated traffic evaluations. Despite all this, 

no study looked at the adversarial machine learning attacks as a whole, that is, adversarial 

examples, model inversions and membership inference. Modern attacks leverage crafted 

inputs to exploit learned detection policies, yet this critical dimension remains untested. 

 

Due to these limitations, certain practical situations pose challenges, such as an IDS 

trained on NSL-KDD failing to recognise attacks targeting slice orchestration APIs or 

containerised network functions. This is because these types of attack patterns did not 

exist in pre-5G datasets. Another critical issue is how a false positive in an industrial 5G 

system could trigger an emergency shutdown. This would halt production lines, resulting 

in millions of losses, yet no study has validated false-positive rates under operational 

industrial conditions. 

 

2) DDoS Mitigation 

DDoS mitigation represented the second most addressed area, with four studies [25], [36], 

[43], [44] focused on autonomous attack suppression. Reinforcement learning agents 

demonstrated impressive reductions in attack impact (89% to 96.7%). However, in the 

studies, simplified threat models dominated single-vector volumetric flooding with 

predictable signatures, ignoring modern vector botnets that exploit volumetric, protocol, 

and application-layer vulnerabilities simultaneously.  

 

The approach in [25], while based on DRL, achieved sub-50ms decision latency in SDN 

environments but considered only 100-node networks with synthetic attack traffic. 

Scalability to ultra-large 5G deployments is unexamined. Similarly, the vehicular V2X DDoS 

mitigation in [44] reported response times of 8.3ms, meeting ultra-low latency 

requirements in controlled environments without vehicle mobility, handover disruptions, 

or channel degradation. Multi-agent DDoS detection [36] achieved 34% latency 

improvement but incurred 120-180ms of coordination overhead, incompatible with sub-

10ms URLLC requirements. It is worth noting, however, that none of these studies 

investigated reward signal manipulation, in which adversaries craft traffic to train the 

agent to identify malicious traffic as legitimate. All these limitations, however, become a 

problem when applied correctly, that is, in a 5G smart city, a sophisticated botnet could 
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probe the DRL defence to learn the pattern and mimic a legitimate emergency service. 

This means the RL agent then learns and classifies these attacks as emergency service 

while maintaining apparent QoS metrics. 

 

3) Network Slicing Security 

Network slicing security was another application area specific to 5G, where agentic 

systems addressed problems such as isolation violations, resource exhaustion, and inter-

slice attacks [24], [30], [31], [34], [35], [38]. This is a highly critical application domain, since 

slice isolation underpins multi-tenancy in 5G and is crucial for regulatory compliance in 

industries that demand strict data separation. However, overly soiled models contradict 

operational reality where slices share physical infrastructure, control channels and 

orchestrate functions. 

 

The federated learning approach to slice security in [24] achieved 95.8% accuracy in 

detecting isolation violations. It, however, assumed independent slice action, which is 

unrealistic for actual 5G. The game-theoretic strategic defence in [38] was an elaborate 

strategy that combined two-layer federated learning with mean-field game theory and 

attained a 43% improvement in slice compromise prevention against adaptive 

adversaries. Unfortunately, it required a 2.7-second equilibrium computation, which is 

unacceptable for real-time breach containment. Scalability validation limited to 100 nodes 

raises questions about networks that may host hundreds of slices. Despite studies 

examining interslice security, none evaluated lateral movement scenarios in which 

compromising one slice enables attacks on adjacent slices via shared infrastructure. 

Furthermore, they seem to lack privacy-preserving decision mechanisms and transparent 

governance protocols, which are essential for cross-tenant collaboration [45][46]. 

 

4) Physical-Layer and Specialised Threats 

There are limited physical-layer threats, including jamming, eavesdropping, and signal 

manipulation. One study addressed jamming [29] using federated DRL. It achieved a 

success rate of 91.7%, although it modeled jammers as static adversaries with predictable 

patterns. This totally disregarded reactive jamming that adaptively adjusts interference. 

Furthermore, it did manage to raise questions about reactive jamming adjusting within 

milliseconds; anti-jamming coordination incurred 340ms overhead. 
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Furthermore, the study did involve other socialised applications, such as strategic 

deployment [40], which unfortunately remained simulation-centric and did not address 

effects in resource-constrained environments, including scalability issues. [42] evaluated 

encrypted traffic detection, but unfortunately, it was evaluated against synthetic traffic 

rather than operational captures using realistic encryption protocols. QoS optimisation 

by [32], [35], [43] omitted simultaneous active threat mitigation, leaving questions about 

performance under combined constraints. Table 4 shows the summary of AI models vs 

the threat types and performance.  

 

Table 4: AI models vs Threat Types and Performance 

AI Model DDos Intrusion Slicing Anomaly Physical Performance 

DQN 

[25], 

[43], 

[44] 

[26] - - - 
89-96.8% 

accuracy/impact 

MARL [36] - [35] - - 
34% latency 

improvement 

Federated 

Learning 
- [27], [28] 

[24], [30], 

[31], [34], 

[35], [38] 

[23] [29], [42] 
94.8-97.3% 

accuracy 

Hybrid - [28] [32],[38] - [29] 
+8.6-43% over 

single-paradigm 

 

3.4. Which AI algorithms and architectural models are currently deployed for 5G 

threat detection and mitigation, and what are their comparative strengths and 

limitations? 

The reviewed studies addressed diverse algorithmic and architectural combinations with 

different trade-offs between performance, scalability, privacy and responsiveness. 

 

1) Single-Agent Approaches using Deep Q-Networks 

Single-agent architectures [25], [26], [40], [43] relied on placing agents at centralised 

control points, offering complete visibility but consequently introducing critical 

vulnerabilities. The algorithm has a variety of strengths, such as DQN demonstrating 

effectiveness across SDN-based DDoS mitigation, wireless intrusion detection, QoS-

preserving DDoS mitigation and V2X security. It handles high-dimensional state spaces 
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and generalises to unseen attacks with 83-91% effectiveness, while also learning from 

experience. DQN converges within 150-200 episodes, yielding high detection accuracy 

and 89-94% reductions in attack impact. However, despite all these, it does have 

weaknesses, such as being unacceptable for production areas with daily merging variants. 

The only way to learn is to retrain the model completely. Vulnerability to diverse 

manipulation, which enables attacks to craft traffic exploiting learned Q value estimates. 

 

The SDN-based DRL mitigation in [25], for example, demonstrated sub-50ms decision 

latency for 100-node networks; scalability beyond this modest scale was not validated. 

Centralised architectures introduce fundamental scalability limits by creating a 

processing bottleneck in which a single agent must make all security decisions for entire 

networks. Single points of failure are more critical concerns. An example of these would 

be a DQN controller managing 5G core protection that has to handle security decisions 

across all network slices simultaneously. During sudden traffic spikes or synchronised 

assaults on multiple slices, that sole system gets overwhelmed. When malicious data 

skewing its decision scores is used to hack the defence setup, the whole defence setup 

collapses, putting every user at risk. 

 

2) Multi-Agent Systems Using MARL 

The distributed agents coordinated across network elements [32], [35], [36], [39], offering 

resilience and eliminating single points of failure but introducing coordination 

complexity. MARL demonstrates strong capabilities, achieving 34% latency reduction [36] 

and graceful degradation [35] in distributed decision-making. This does eliminate 

centralised bottlenecks. The agents, however, slowed down their communication, taking 

120 to 180 ms, which is beyond the 10 ms speed needed. Training complexity also 

increases when dealing with multiple-agent environments, as each environment evolves 

as the others learn. MARL setup introduces new limitations, such as scaling tested up to 

just 50 agents, so how it works when the number of agents increases. Byzantine 

vulnerability emerged as a critical concern bad actors could mess things up by messing 

up their strategies, but none of the studies tried using defences against such. Crashes 

were treated like chance events, not smart attacks aimed at causing maximum chaos. 

Running this setup takes way more effort than handling one agent alone, needing 

teamwork across machines, aligning decisions, plus tracking inter-agent actions that pop 

out of nowhere. How this would work is in a 5G network spread across 200 edge nodes 
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using MARL agents, a skilled hacker might take over 10 key units placed where data comes 

together. Instead of cooperating, these Byzantine agents send fake strategy changes 

when syncing, slowly weakening overall threat spotting ability but also creating specific 

gaps on purpose. Because sync delays last between 120 and 180 milliseconds, the system 

can't react fast enough to breaches that target those created weaknesses. 

 

3) Federated Learning Systems 

Federated multi-agent systems [23], [24], [27]–[29], [42] integrated distributed decision-

making with privacy-preserving collaborative learning, aligning naturally with 5G multi-

tenant architecture. Federated learning systems have strengths, such as lower privacy 

risks since each group trains locally and then combines results later, with detection 

accuracies of 95.2%-97.3%. Knowledge moves between groups, yet original data stays 

hidden at all times. Decentralised operation allows real-time local security decisions while 

periodically aggregating learned models; however, it has weaknesses, such as model 

merging that can take a few minutes or longer, which clashes with how quickly threats 

need responses. Instead of speeding things up, privacy tweaks slow down training by 15-

35%, making it harder to keep both data safe and responses quick, especially when there 

is no clear way to set those controls. Because individual systems update faster than the 

main model integrates them, devices may run on outdated versions when attacks evolve 

rapidly, potentially missing new threat indicators. A weakness in the system stems from 

a Byzantine vulnerability. Hackers could send fake model updates that compromise 

overall results or introduce hidden flaws, but so far, no research has tested robust fixes 

such as Krum, Bulyan, or cryptographic verification. This misses a real need in shared 5G 

setups where attackers might intentionally hijack users. Tests were limited to 100 nodes, 

which makes it unclear whether these methods can handle live networks with many more 

participants. Coordination at that scale has not yet been proven. A use case where the 

vulnerabilities can be addressed is a federated learning setup that secures network slices 

for 50 business clients. It appears safe at first glance, yet a clever hacker breaches only 

5 of those (that is, 1 in 10). They could slip altered models into the mix when updates are 

combined. Instead of breaking everything, these tainted inputs slowly create hidden gaps 

that allow certain threats to go unnoticed, such as unauthorised access to banking 

systems. Though general performance still looks solid on paper, defences against 

targeted intrusions drop sharply, from catching nearly all such attempts to fewer than 6 

out of 10 over time, even as standard checks show no red flags. 
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4) Hybrid Architectures Combining Multiple Paradigms 

Complex hybrid designs [28], [29], [38] merge complementary techniques (FL + DRL, FL + 

game theory) to achieve superior performance. Fewer errors were observed with hybrid 

strategies, up to 43% fewer than with a single-paradigm approach. Federated DRL for 

IIoT intrusion detection [28] hit 97.2% right calls by merging private learning with quick-

thinking controls. One advanced method is the Two-layer FL with mean-field game theory 

[38], which detects compromised zones much more frequently through clear back-and-

forth threat tracking. However, despite the great improvements, it has costs and 

complexity. Computation took 15–40% longer compared to basic approaches. Game-

theoretic equilibrium computation took 2.7 seconds, which may be too slow for quick 

responses. Managing the system requires knowledge of several AI areas, such as 

federated learning, reinforcement learning, and strategic modelling, while also 

troubleshooting unexpected tool conflicts and balancing conflicting goals across 

different design levels. Integrating different approaches, however, is challenging; most 

hybrid methods appear random rather than being built step by step from the task at 

hand. No paper provided clear blueprints for the smart blending of techniques or 

explained when certain mixes make sense. Key questions remain unanswered: when does 

federated learning substantially improve reinforcement learning? When should we use 

game-style thinking instead of straight RL alone? Missing solid theory means real-world 

builders have no reliable rules to follow while crafting combined setups Table 5 shows a 

summary of the learning approaches against performance and operational 

characteristics 

 

Table 5: Learning Approaches vs. Performance and Operational Characteristics 

Approach Accuracy Latency 
Max 

Scale 

Adversarial 

Testing? 

Real 

Deployment? 
Key Limitation 

Single-

AgenT 

DQN 

89-

96.8% 

<50ms 

decision 

100 

nodes 
No No 

Single point of 

failure 

MARL 78-96% 
120-180ms 

coord 

50 

agents 
No No 

Coordination 

overhead vs 

URzLC 

Federated 

Learning 

94.8-

97.3% 

Minutes-

hours agg 

100 

nodes 
No No 

Byzantine 

vulnerability 
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Hybrid 

97.2% 

(+43% 

gain) 

2.7s 

equilibrium 

100 

nodes 
Partial [37] No 

15-40% 

overhead, 

multi-domain 

expertise 

 

3.5. What empirical, methodological, and operational gaps persist in the current 

literature regarding scalability, adversarial robustness, and real-world 

deployment feasibility? 

The analysis reviews systematic limitations that constrain the readiness of agentic AI for 

operational 5G deployment. 

 

1) The Simulation-Reality Gap 

Most research leaned heavily on simulations - 86.4% used them alone, while 9.1% mixed 

in network emulation instead. Only 4.5% attempted any real-world checks. Because of 

this, findings may not generalize outside controlled settings, a major drawback when 

applying results more broadly. Simulated setups typically employ basic threat scenarios; 

attack methods are often routine or fixed. Network settings remain unchanged during 

tests, whereas data traffic is generated rather than drawn from real-world breaches. 

Instead of adjusting on the fly to bypass security, attackers adhere to preset rules. 

Because of these shortcuts, results such as 88–98% detection rates or 89–96.7% less 

damage may reflect best-case outcomes. Real-world performance would likely fall short. 

Furthermore, datasets are getting outdated: Most hacking detection research still relies 

on old standards like NSL-KDD or UNSW-NB15 - benchmarks made before 5G even 

existed, so they do not cover risks tied to virtual functions, broken slice barriers, or 

hacked split radio systems. Because of this gap, tools built using earlier threats will not 

detect risks unique to 5G systems. 

 

2) Adversarial Robustness: The Missing Dimension 

Across all 22 studies, adversarial robustness testing was virtually absent. Hackers now 

use sophisticated data tricks to fool smart systems, disrupt shared learning, or 

manipulate feedback loops. Even though these defences are becoming sharper, none of 

the works tested defences against fake inputs, stolen model leaks, guessing private 

information, or corrupted updates to detect break-ins, stop floods, or detect anomalous 

behaviour. One paper [38] used a strategy-style setup but still ran only pretend trials that 
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took about 2.5 seconds to balance. It does have a critical vulnerability. Self-driving tech 

might handle common attacks just fine, yet crash hard when tricked by clever tweaks 

that target its decision-making. These hacks are a significant gap in demonstrating that 

these systems can remain reliable in hostile 5G networks. 

 

An example would be someone trying to break in might test a DRL-powered defence 

against floods of fake traffic. By watching how it reacts, like checking what gets 

rewarded, they shape harmful data flows that look like urgent help requests. Instead of 

blocking them, the system begins allowing them through because stopping them incurs 

penalties. Over time, it is tricked into sustaining harmful traffic without appearing faulty. 

If no one tests its robustness to adversarial attacks, this flaw will not surface until it is 

already being exploited. 

 

3) Scalability: The Unvalidated Frontier 

With a limited validation scope, the largest tests covered only 100 nodes or 50 agents. 

Real-world 5G deployments may require coordination among thousands of units 

distributed across large areas, including densely populated urban areas. So systems that 

work well in lab conditions (like 100-node trials) could break down when pushed to real-

life size because: 

a) Chatting slows way down when more agents join - each new one adds extra 

hassle that stacks up fast 

b) As systems spread out, agreement takes longer due to tangled communication 

paths 

c) Attacks from tricky insiders messing with team systems when things get big 

d) Edge resource constraints limiting agent computational capacity 

 

Scaling up, however, causes delays: systems with 50 agents show a lag of 120–180ms,  

Competing objectives: Federated learning preserves data privacy, which is essential when 

multiple groups collaborate, but it slows model updates, sometimes taking minutes or 

even hours. That delay conflicts with rapidly evolving cyber threats that require 

immediate responses [47],[48].  Differential privacy mechanisms further reduce learning 

speed by 15-35%. So far, no research has mapped out how these factors conflict or 

offered clear rules for choosing settings that balance secrecy, precision, and rapid 

responses. When agents make rapid local decisions based on outdated data, and updates 
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arrive only after delays, they may overlook emerging attack styles. This gap arises 

because learning occurs gradually in the background rather than in real time. The risk of 

this delay depends on how rapidly threats change, yet no one knows exactly where the 

tipping point lies. Missing subtle shifts becomes more likely if changes outpace model 

refreshes. 

 

4) Lack of Benchmarking Standards 

Without fixed 5G safety rules, it is hard to judge which study performs better. Varying 

datasets, such as NSL-KDD, UNSW-NB15, or synthetic traffic, disrupt consistency. Network 

sizes differ, from a few machines to nearly a hundred. Some tests assess one type of 

attack; others examine multiple threats simultaneously. Additionally, researchers employ 

different measures of success: one uses accuracy, another uses F1-score. At the same 

time, someone else tracks the amount of damage avoided. Furthermore, no 5G-focused 

test data exists, and public sources do not cover unique risks such as broken slice 

separation, hacked O-RAN links, compromised virtual functions, or mmWave signal 

tampering. Because of this gap, results cannot be independently verified; without 

consistent reference points, real improvement is difficult to measure. 

 

5) Responsible AI and Ethical Considerations 

Privacy-safe choices in shared setups: According to [45], when different groups operate 

joint systems, such as federated or agent-based networks, they require built-in tools to 

protect private information and clear decision-making rules. Network slicing methods do 

not include such protections, even though collaboration across tenants could leak 

confidential information or allow outsiders to infer usage patterns. In addition, some 

security tools operate independently, shutting down components or halting data flow 

without explanation. These choices stay hidden because there is no clear way for people 

to see how they were made. You cannot check if the logic is right when you do not get 

an explanation. No visibility means doubts grow fast, especially where rules demand 

answers. When no one understands the call, confidence drops significantly. Last but not 

least, fairness issues arise with the use of AI. No study has checked whether smart AI 

performs unevenly across different renters, priority levels, or locations. Skewed data or 

rewards might hurt certain users, even when overall scores look good. 
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3.6. Conceptual Framework for Agentic AI in 5G Threat Detection and Mitigation 

This review builds a Conceptual Framework for Agentic AI in 5G security, drawing on 

insights from 22 real-world studies shown in Figure 8. It shows how self-driven threat 

response operates through a loop of intelligence split into four parts: Perception, 

Decision, Action, and Feedback. These layers rely on three key supports that run across 

them all: keeping data private, handling growth smoothly, and resisting attacks 

effectively. 

 
Figure 8. Conceptual Framework of Agentic AI for 5G Threat Detection and Mitigation. 

 

The perceptual layer of agents monitors network state through data-flow inspection, 

abnormal behaviour detection, and usage tracking at the RAN, MEC, and Core levels. The 

Decision Layer not only reacts but also enhances protection schemes through trial-and-

error learning, shared control settings, and OR teamwork among several agents, based 

on safety objectives and live requests. The Action Layer intervenes at the proper moment. 

For instance, this may involve blocking suspicious traffic, reallocating resources, or 

isolating the affected slices using software-defined networking, virtual functions, or local 

processing. Ultimately, the Feedback Layer concludes the self-running cycle by 

monitoring the performance of previously executed actions and updating agent tactics 

via reward-driven training. 

 

For the architecture to work, enablers are required. These enablers span all layers of the 

architecture, each with its own tasks and confirmations. These enablers are privacy 

preservation, scalability, robustness against Byzantine agents, robustness against 

adversarial machine learning attacks, and intelligent evasion strategies. This framework 
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provides a unified structure for analysing how autonomous agents perceive threats, 

decide on responses, execute actions, and continuously adapt in adversarial 5G 

environments. 

 

A 5G setup powering smart factories faces a coordinated attack: first, massive fake 

traffic floods the factory's IoT network; next, evasive data patterns evade security alarms; 

then, hackers try to slip into nearby business zones. Framework response as follow. 

1. Perception: Sensors on edge devices spot weird traffic like signs of DDoS attacks 

or notice an industrial IoT network slowing down, while also catching cases where 

one network probes another against rules 

2. Decision: Agents spread work together using a robust method that handles faulty 

inputs, enabling them to spot dangers, assess how serious each is, since the IIoT 

network runs vital factory systems, and pick actions that reduce harm while 

keeping service quality steady. 

3. Action: Edge agents handle quick tasks like slowing down traffic fast (under 10ms), 

keeping network slices separate so threats do not spread, or teaming up to block 

DDoS attacks across different spots; meanwhile, central agents tweak resources 

to keep industrial IoT performance safe and stable 

4. Feedback: Agents notice how attacks change, like DDoS moving to the application 

layer or traffic tweaking its stealth tactics, they adjust their responses on the fly 

using real-time learning, keep user data safe with built-in noise techniques, yet 

still spread key warnings among connected teams 

 

Decision logs make choices clear so people can understand why systems get isolated. 

Fairness checks ensure that low-priority tenants still receive adequate security coverage. 

Privacy safeguards prevent data leakage between tenants when systems work together. 

This example shows how the new proposed framework tackles key missing pieces: 

stronger defence against changing threats, support for large-scale systems through 

decentralised control, better trade-offs between data privacy and quick decisions using 

on-device learning, and clearer accountability via open models, unbiased outcomes, and 

secure handling, all overlooked in today’s simulated studies yet critical when putting 

solutions into real-world use. 
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3.7. Limitations 

1) Methodological Limitations 

The literature review methodology may limit the systematic findings.  There are four 

databases on IEEE Xplore, ACM, SpringerLink, and ScienceDirect; searches were limited to 

English-language publications, thus excluding potentially relevant publications from 

other venues and languages. Only 22 studies on agentic AI and 5G security met the 

inclusion criteria. This small pool of studies is not an exhaustive list of all relevant work. 

Instead, it shows that the field is quite young. While the PRISMA 2009 framework helped 

ensure the review's meticulous methodology, it may have omitted grey literature, 

preprints, or new evidence not yet published in peer-reviewed fora. Publication bias likely 

affected the sample, as studies with positive results are more likely to be published than 

those with negative or less conclusive results, potentially making the efficacy of agentic 

AI appear better than it actually is. 

 

2) Study-Level Limitations 

The studies exhibited serious limitations that constrain generalizability and practical 

applicability. Almost 20 out of 22 studies relied mainly on simulation environments, very 

few on emulation and minimal real-life deployment validation. There are concerns about 

performance issues. This is due to actual network complexity, the complexity of real 

attacks, and operational constraints that are missing in simulations. Most evaluation 

methods used older intrusion detection datasets rather than newer ones. They used the 

NSL-KDD and UNSW-NB15 datasets or synthetic attacks rather than the 5G dataset, which 

captures attacks on slicing or functions. Since synthetic attacks may not accurately 

reflect real-world adversarial behavior, they may overestimate actual detection 

performance. 

 

Most-cited works have serious limitations in their scalability analyses. In fact, the most 

extensive evaluations performed involve (at most) 100 nodes or 50 agents. Hence, there 

remains considerable uncertainty regarding performance in ultra-large 5G deployments 

involving thousands of coordinating agents across large geographic areas. Adversarial 

robustness has hardly received any attention. No study has quantitatively checked the 

resilience against Byzantine agents, adversarial machine learning attacks and clever 

evasion attacks aimed at the designed algorithms. The absence of standard evaluation 

metrics for agentic AI in 5G security studies hinders comparisons and the evaluation of 
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relative effectiveness. These considerations of energy efficiency and computational 

overhead become important in battery-powered edge devices and resource-constrained 

IoT gateways. However, these studies were not conducted.  It creates uncertainty 

regarding deployment in resource-constrained environments.  

 

3) Scope and Coverage Limitations 

According to the review, there were clear deficiencies regarding the threats and uses. 

Physical-level attacks, such as jamming and eavesdropping on communication signals, 

can compromise the wireless link. However, there is limited focus on them. In fact, the 

only paper that deals with jamming is [6]. The work relied heavily on core 5G network 

measures rather than addressing them. Real-world risks such as app-layer DDoS and 

complex, combined attacks are increasing rapidly but have not been systematically 

studied.  They barely touched critical installations that require custom-made defences, 

such as special setups, satellite-connected 5G, and drone systems. 

 

3.8. Implications 

1) Theoretical Implications 

The review in question presents relevant theoretical insights at the intersection of 

robotics, cybersecurity and telecommunications. The fact that agentic systems have been 

successfully developed and used to address several 5G security challenges suggests that 

the concept generalises from robotics and cooperative multi-agent systems to 

adversarial security problems. Afterward, clear theory gaps emerge when systems join 

attacks at a single location, and attacks make independent choices to establish an 

equilibrium that balances teamwork, faster attacks, and self-protective data. Combining 

federated learning with reinforcement learning can enable private data methods and 

support informed decision-making. Instead of keeping these, blending them opens new 

ground, especially where privacy rules, teamwork-based updates, and step-by-step 

decisions meet under pressure. Such compromises mean that new research should 

develop multi-robot or agent methods that anticipate hostility, rather than tweaking 

team-based models designed for safe settings, and that these methods can be based on 

a combination of federated learning and reinforcement learning. 
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2) Practical Implications 

Agentic AI gives telecom providers and cybersecurity teams practical guidance for 

securing live 5G networks without exposing customer data. The evidence shows that 

multi-agent, distributed setups handle network stress better and scale more smoothly 

than centralised models. Although these results appear promising, it is important to note 

that most were conducted in simulated environments. This implies that there is a need 

to obtain real-world testbed results before proceeding further and pursuing full-scale 

adoption. 

 

3) Policy Implications 

This review has highlighted issues that regulators and standards bodies must address 

quickly as agentic AI begins to run within 5G networks. Policymakers should design clear 

rules that allow organisations to share threat insights securely, using privacy-preserving 

techniques such as federated learning, and to define legal liability in the event of system 

malfunctions.  Regulators of multi-agent systems should require pre-deployment testing 

to account for rogue or faulty nodes. The system must be checked to ensure it is not 

vulnerable to manipulations through data or collusion. Accountability guidelines must 

address errors such as blocking the wrong user and failing to detect an attack, making 

them traceable and auditable, perhaps by using explainable AI tools. Currently, there are 

no common testing standards. As such, 3GPP, ITU, and ETSI need to develop evaluation 

frameworks focused on 5G security. The frameworks should use realistic threat datasets 

and performance measures extending beyond mere accuracy. Many IoT devices have 

limited energy and processing potential. Hence, regulations should ensure that power use 

is continuously and visibly reported. In addition, they should encourage the adoption of 

lightweight AI models that will not burden the network. 

 

3.9. Future Research Directions 

While agentic progress continues, future research must shift from simulation-based 

studies to real-world testing that demonstrates behaviour in practice. Access to near-

production network environments through collaborations between operators and 

research institutions would expose gaps hidden in short laboratory experiments. 

Strengthening resilience against adversarial manipulation remains equally important, 

particularly as multi-agent systems introduce opportunities for poisoned rewards, 

disrupted coordination, or malicious nodes. This indicates a need for further research on 
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robust learning mechanisms, game-theoretic attacker-defender models, and behavioural 

anomaly detection that monitors agents themselves. Increasing the number of agents 

and nodes also requires a different approach, such as hierarchical coordination, 

lightweight consensus methods, hybrid single-agent/multi-agent modes, and online 

learning that can manage device traffic. In addition, future systems should consider 

current security studies, such as zero trust, and how to integrate them. Energy efficiency 

remains a critical challenge since most 5G devices and edge nodes cannot support heavy 

computation; therefore, work on model compression, low-precision inference, knowledge 

distillation, and cloud–edge hybrid designs must be validated on real 5G hardware. 

 

4. CONCLUSION 

 

This review examined 22 recent studies on agentic AI for detecting and mitigating threats 

in 5G networks. Most research indicates that federated learning performs best when 

multiple users share security configurations, with nearly half of the studies focusing on 

this setting. Reinforcement learning enables systems to respond more quickly and detect 

hazards with 94.8%- 97.3% accuracy. When using several AI agents together, they can 

coordinate across locations but introduce delays of 120-180 milliseconds, which is too 

slow for ultra-fast connections. Mixing different methods boosts performance by up to 

43%, though processing requirements increase by 15-40%. Despite advances in 

algorithms, key problems remain. Most tests rely on simulations (about 86%), making 

results difficult to apply in real-world settings. When it comes to facing challenging 

enemies or sophisticated attacks, almost no testing has been conducted. Systems have 

not been tested beyond 100 nodes, so we are uncertain how they would perform in large 

networks with thousands of nodes. Also, balancing privacy and rapid response remains 

challenging; sharing data safely slows things down when quick action’s needed. The 

proposed Conceptual Framework runs on a loop sense, decide, act, learn, with a strong 

focus on privacy, room to grow, and defence against attacks. It helps turn experimental 

AI into real-world systems. Future steps would include testing it in live 5G networks, 

conducting rigorous attack simulations, demonstrating its performance across thousands 

of units, developing 5G-specific benchmarks, and incorporating ethical AI practices. With 

5G spreading into key systems like automated factories, driverless cars, telemedicine, and 

connected urban areas, agentic AI gives network providers a way to build self-repairing 

systems that spot and block complex hacks in moments all while keeping user data 
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private; yet getting it ready for real use means closing known weaknesses by running 

tough field tests, checking resistance to malicious inputs, and proving performance at 

scale so this tech can actually deliver on securing future networks from ever-changing 

digital dangers. 
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