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Abstract. Student dropout in STEM programs remains a persistent 

challenge for higher education institutions, reducing educational 

quality, weakening retention outcomes, and increasing 

inefficiencies in resource utilization. This study develops an 

interpretable Stacking Ensemble Learning approach to predict STEM 

student dropout risk and identify key academic and socioeconomic 

determinants that can support data-driven early intervention. 

Following the CRISP-DM framework, we analyze 3,630 student 

records from the UCI Machine Learning Repository containing 

demographic, academic, and socioeconomic attributes. The 

proposed stacking architecture combines Random Forest, Gradient 

Boosting, and XGBoost as base learners with Logistic Regression as 

a meta-learner, while SMOTE–Tomek Links is employed to address 

class imbalance and reduce boundary noise. Experimental results 

show that the model achieves strong predictive performance with 

90.91% accuracy and ROC–AUC of 95.72%, demonstrating stable 

discrimination and outperforming individual base models. Feature 

importance analysis indicates that early academic trajectory 

variables—especially first- and second-semester success rates, total 

approved units, and average grades—are the most influential 

predictors of dropout risk. The proposed framework contributes a 

practical, interpretable early warning model by integrating stacking 

ensemble learning with imbalance handling and trajectory-based 

feature engineering, supporting actionable intervention planning in 

higher education. 

 

Keywords: Stacking Ensemble Learning; Student Dropout 
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1. INTRODUCTION 

 

Student dropout in STEM programs remains a persistent and high-impact challenge for 

higher education institutions, especially in Indonesia where national policies increasingly 

tie institutional accountability to graduation rates, retention, and data-driven quality 

assurance. When STEM students discontinue their studies, the consequences extend 

beyond individual academic trajectories: institutions lose tuition revenue and efficiency 

in resource allocation, program performance indicators weaken, and the national agenda 

to build digitally capable, industry-ready human capital is slowed. In this context, reducing 

dropout is not only an educational concern but also a strategic requirement linked to 

accreditation outcomes, institutional performance evaluation, and government-driven 

initiatives that prioritize timely completion and improved academic services. 

 

Despite this urgency, dropout in academically demanding STEM programs is shaped by 

interacting factors that universities often struggle to monitor early and consistently. The 

simultaneous decline in enrollment and the rise in dropout rates underscore how 

socioeconomic constraints and academic performance can combine to disrupt students’ 

continuity while also reducing institutional efficiency [1]. Beyond institutional metrics, 

dropout also affects educational quality, human resource development, financial 

sustainability, and graduates’ competitiveness in the labor market [2]. These realities make 

early identification of at-risk students a practical necessity: the earlier universities can 

detect risk, the more feasible it becomes to deliver targeted academic support, financial 

guidance, and advising interventions before students disengage irreversibly. 

 

Recent advances in Artificial Intelligence (AI) and Machine Learning (ML) have expanded 

the feasibility of analyzing large-scale academic records to predict dropout risk. 

Accordingly, many studies model dropout prediction as a binary classification task and 

report promising performance using various ML algorithms [3] [4]. However, much of this 

work emphasizes predictive accuracy as the primary objective, often leaving a critical 

institutional need insufficiently addressed: interpretability. For academic leaders and 

program managers, knowing who is at risk is not enough—effective policy and 

intervention design requires understanding why students are at risk, which factors are 

most influential, and how those factors can be translated into actionable support 
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strategies. Without interpretable evidence, even high-performing predictive models may 

remain underutilized in real academic decision-making. 

 

Ensemble learning offers a strong pathway to improve robustness and generalization by 

combining multiple models rather than relying on a single learner [5]. Among ensemble 

approaches, Stacking Ensemble Learning (SEL) integrates diverse base learners and 

optimizes their combined output through a meta-learner—commonly Logistic 

Regression—to improve accuracy and stability [6]. Although SEL has demonstrated strong 

performance in educational analytics, its use for STEM dropout prediction with explicit 

attention to interpretability and operational deployment remains limited, particularly 

within Indonesian higher education settings. This gap matters because institutional 

adoption depends not only on performance metrics but also on transparent explanations 

that align with advising workflows, policy targets, and quality assurance requirements. 

 

To address this gap, this study develops an interpretable Stacking Ensemble Learning 

model for predicting STEM student dropout risk while simultaneously identifying key 

academic and socioeconomic determinants. Using the CRISP-DM framework, the 

proposed approach integrates Random Forest, Gradient Boosting, and XGBoost as base 

learners with Logistic Regression as a meta-learner, and applies SMOTE–Tomek Links to 

mitigate class imbalance and improve minority-class discrimination. Experimental results 

demonstrate strong predictive performance, achieving 90.91% accuracy and a ROC–AUC 

of 95.72%, while maintaining stable class separation. Beyond performance, the novelty of 

this work lies in pairing a high-performing SEL architecture with an interpretability-driven 

analysis that surfaces concrete, institutionally meaningful drivers of risk—bridging the 

common disconnect between model accuracy and decision usability in prior studies. 

 

The contributions of this research are threefold. First, it implements a stacking ensemble 

that combines Random Forest, XGBoost, and Gradient Boosting to enhance predictive 

performance for STEM dropout classification in an Indonesian university context. Second, 

it prioritizes interpretability through feature importance analysis to clarify which 

academic and non-academic variables most strongly influence dropout risk, supporting 

explainable early-warning decisions rather than opaque predictions. Third, it translates 

the model’s insights into strategic guidance for universities to design data-driven 

intervention programs aligned with retention targets and national quality assurance 



Vol. 8, No. 1, February 2026 

 
 

459 | Stacking Ensemble Learning for University Student Dropout Prediction 

priorities. Feature importance results emphasize early academic trajectory indicators—

particularly first- and second-semester success rates, total approved units, and average 

grades—as the most influential predictors of dropout risk, reinforcing the practical value 

of embedding the model into academic information systems as an actionable early 

warning tool. 

 

2. METHODS 

 

This study adopts the CRISP-DM (Cross-Industry Standard Process for Data Mining) 

framework because it offers a well-established, industry-standard methodology for 

organizing machine learning and data mining work into a clear, auditable, and repeatable 

process [7]. CRISP-DM is particularly suitable for educational prediction tasks because it 

connects technical modeling choices (e.g., feature engineering, imbalance handling, 

algorithm selection) to institutional goals (e.g., early warning and intervention). 

Importantly, CRISP-DM is iterative: insights from evaluation can trigger revisions to 

earlier stages (such as redefining success criteria, improving data preprocessing, or 

refining features), supporting continuous model improvement rather than a one-pass 

pipeline [8]. The six interconnected phases used in this study are summarized in Figure 1 

and operationalized through the activities described in the following subsections.  

 

 
Figure 1. CRISP-DM Methodological Framework for Predicting Students’ Academic and 

Socioeconomic Performance 

 

CRISP-DM was selected because it is comprehensive yet flexible, enabling systematic 

planning while remaining adaptable to the practical issues commonly encountered in real 

datasets—missing values, noisy labels, class imbalance, and multicollinearity. Its phase-

by-phase structure also helps ensure methodological transparency, which is essential 
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when developing decision-support tools in higher education environments where model 

outputs must be interpretable and actionable. Table 1 presents the CRISP-DM phases and 

their core objectives, which guide the overall workflow in this research. 

 

Table 1. CRISP-DM Process Stages 

Phase Brief Description 

Business 

Understanding 

Define business and data mining objectives and establish 

project success criteria. 

Data Understanding Collect, explore, and verify data quality. 

Data Preparation Select, clean, and transform data to make it suitable for 

modeling. 

Modelling Select modeling techniques, build models, and adjust 

parameters to achieve optimal results. 

Evaluation Evaluate models against business objectives and 

predetermined criteria. 

Deployments Implement models in the form of ready-to-use reports, 

systems, or applications. 

 

The mapping between CRISP-DM phases and the structure of this paper is provided in 

Table 4 to maintain traceability between methodological stages and reported outcomes, 

ensuring that each modeling decision can be connected back to a specific phase and 

objective. 

 

2.1. Business Understanding 

The business understanding phase clarifies the problem definition, translates institutional 

needs into analytical goals, and defines measurable success criteria for the project [10]. 

In this study, the primary objective is to develop a predictive system that classifies 

student outcomes as Dropout or Graduate using a Stacking Ensemble Learning approach. 

The practical motivation is to support higher education institutions in early identification 

of at-risk students and to strengthen data-driven decision-making for improving 

graduation outcomes and retention strategies. 

 



Vol. 8, No. 1, February 2026 

 
 

461 | Stacking Ensemble Learning for University Student Dropout Prediction 

Success criteria are established in two complementary dimensions. First, the model must 

achieve competitive predictive performance aligned with benchmarks reported in 

comparable dropout prediction research (e.g., robust accuracy and discriminative power). 

Second, the model must support institutional usability by producing outputs that can 

inform intervention planning—meaning that interpretability is treated as a requirement 

rather than an optional add-on. This phase therefore defines a dual target: high 

classification performance and clear identification of key drivers that universities can 

act upon. 

 

2.2. Data Understanding 

This study uses the Predict Students’ Dropout and Academic Success dataset from the 

UCI Machine Learning Repository [11]. The original dataset contains 4,424 student records 

and 37 variables spanning demographic, academic, admission-related, and macroeconomic 

attributes, along with a target label representing academic status. To formulate a clear 

supervised learning task with verified outcomes, records labeled “Enrolled” were excluded, 

producing 3,630 samples for binary classification. The retained dataset includes 

demographic variables (e.g., gender, age at enrollment, marital status, application mode), 

first- and second-semester academic variables (e.g., enrolled units, evaluations, approved 

units, grades), admission variables (e.g., admission grade, attendance regime), 

macroeconomic indicators (e.g., unemployment rate, inflation rate, GDP), and the target 

variable (Graduate/Dropout). The class distribution before and after filtering is reported 

in Table 2. 

 

Table 2. Distribution of Target Variables Before and After Filtering 

Status Before Filtering Percentage After Filtering Percentage 

Graduate 2,209 49.93% 2,209 60.88% 

Dropout 1,421 32.12% 1,421 39.12% 

Enrolled 794 17.95% - - 

Total 4,424 100% 3,630 100% 

 

Exploratory Data Analysis (EDA) is conducted to understand variable distributions, detect 

anomalies, and identify early signals associated with dropout [12]. Descriptive statistics 

summarize central tendency and dispersion for numerical features and provide 
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frequency/proportion summaries for categorical attributes. Additionally, correlation 

analysis (via a Pearson correlation matrix) is used to examine linear relationships among 

numerical variables and to flag potential multicollinearity concerns. A multicollinearity 

threshold is applied to identify highly correlated features—particularly among semester-

based academic indicators such as approved units and grades—which are also among the 

most strongly associated with the target outcome [13]. These insights guide subsequent 

feature engineering and selection decisions in the Data Preparation phase. To improve 

interpretability and reduce dimensionality while preserving meaningful structure, several 

engineered features are constructed to summarize cumulative academic progress, early 

trajectory patterns, and financial condition. Table 3 lists the engineered features used, 

including their source variables and analytical intent. 

 

Table 3. Summary of Engineered Features 

Engineered Feature Source Variables Data Type Analytical Purpose 

total_units_approved 

Curricular units 1st sem 

(approved), Curricular units 

2nd sem (approved) 

Numerical 
Capture cumulative 

academic progress 

avg_grade 

Curricular units 1st sem 

(grade), Curricular units 2nd 

sem (grade) 

Numerical 

Represent overall 

academic 

achievement 

success_rate_1st_sem 

Curricular units 1st sem 

(approved), Curricular units 

1st sem (enrolled) 

Numerical 
Measure early 

academic success 

success_rate_2nd_sem 

Curricular units 2nd sem 

(approved), Curricular units 

2nd sem (enrolled) 

Numerical 

Capture 

continuation of 

academic trajectory 

economic_health 
Debtor, Tuition fees up to 

date, Scholarship holder 
Numerical 

Summarize students’ 

socioeconomic 

condition 

 

2.3. Data Preparation 

Data preparation transforms raw data into a modeling-ready format through cleaning, 

encoding, transformation, and imbalance handling. Consistent with CRISP-DM, this phase 

includes data quality checks, selection of relevant attributes, and feature construction 



Vol. 8, No. 1, February 2026 

 
 

463 | Stacking Ensemble Learning for University Student Dropout Prediction 

aligned with the research goals. Categorical variables are encoded to ensure compatibility 

with tree-based learners and the meta-learner, while numerical features may be 

normalized or standardized depending on modeling requirements and stability 

considerations. These preprocessing steps support robust learning and reduce the risk 

of distorted model behavior due to scale differences, noisy categories, or sparsity [19], 

[20]. 

 

Because dropout prediction datasets often exhibit class imbalance—where one class 

(typically graduates) is more frequent—this study applies SMOTE–Tomek Links as a hybrid 

sampling strategy to both oversample the minority class and remove ambiguous 

borderline instances. This approach helps improve minority-class sensitivity while 

simultaneously reducing overlap and noise between classes, which can otherwise inflate 

accuracy while masking poor dropout detection. The use of SMOTE–Tomek Links is 

aligned with best practices for imbalanced classification in educational data mining and 

improves the model’s ability to discriminate dropout cases reliably [21]. 

 

Feature engineering (Table 2) is applied during this phase to reduce redundancy among 

strongly correlated semester-level variables and to capture more policy-relevant 

constructs such as early success rates and cumulative progress. These engineered 

indicators are designed to be more interpretable for academic stakeholders, enabling 

direct translation into intervention logic (e.g., first-year performance monitoring, credit 

accumulation thresholds, financial risk screening). The resulting dataset is then finalized 

for modeling. 

 

2.4. Modeling 

In the modeling phase, multiple algorithms are trained and combined using Stacking 

Ensemble Learning, which aims to improve predictive accuracy and robustness by 

integrating complementary strengths from different learners [22]. This study employs 

Random Forest, Gradient Boosting, and XGBoost as base models because they perform 

strongly on structured tabular data, capture nonlinear relationships, and handle complex 

interactions among academic, demographic, and socioeconomic variables. The outputs of 

these base learners are then combined by a Logistic Regression meta-learner, selected 

for its stability and interpretability when learning optimal weights from the base models’ 

predictions. 
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To ensure a valid stacking procedure and reduce overfitting, the stacking pipeline uses 

cross-validation to generate out-of-fold predictions from the base learners for training 

the meta-learner. This approach prevents information leakage because the meta-learner 

is trained on predictions produced from validation folds rather than on in-sample 

predictions. In this study, the Stacking Classifier is configured with 5-fold cross-validation 

(cv = 5) and uses the auto stack method, enabling the framework to select an appropriate 

stacking strategy based on the prediction outputs. This design strengthens generalization 

and improves the reliability of the final model when applied to unseen student records. 

 

Hyperparameters for each component model are specified to balance predictive 

performance and stability while maintaining reproducibility. All models use a consistent 

random_state = 42 to ensure that results can be replicated across runs. The Random 

Forest is configured with 100 trees (n_estimators = 100) and a maximum depth of 10 

(max_depth = 10) to control model complexity while capturing meaningful feature 

interactions. Gradient Boosting uses 100 estimators, a learning rate of 0.1, and maximum 

depth of 5 to enable incremental error correction without excessive variance. XGBoost 

is similarly set to 100 estimators, a learning rate of 0.1, and maximum depth of 5, with log 

loss as the evaluation metric to optimize probabilistic classification quality. The Logistic 

Regression meta-learner is configured with maximum iterations of 1000 to ensure 

convergence and applies L2 regularization (default) to reduce overfitting and stabilize 

learned coefficients. The full hyperparameter configuration is summarized in Table 5. 

 

Table 5. Hyperparameter Configuration of the Stacking Ensemble Model 

Model Hyperparameter Value 

Random Forest 

Number of trees (n_estimators) 100 

Maximum depth (max_depth) 10 

Random state 42 

Gradient Boosting 

Number of estimators 100 

Learning rate 0.1 

Maximum depth 5 

Random state 42 

XGBoost 

Number of estimators 100 

Learning rate 0.1 

Maximum depth 5 
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Model Hyperparameter Value 

Evaluation metric Log loss 

Random state 42 

Logistic Regression 

(Meta-learner) 

Maximum iterations 1000 

Regularization L2 (default) 

Random state 42 

Stacking Classifier 
Cross-validation folds (cv) 5 

Stack method Auto 

 

2.5. Evaluation 

Model evaluation assesses whether the developed solution meets both technical 

performance targets and institutional decision-support needs. Performance is evaluated 

using standard classification metrics, emphasizing not only overall accuracy but also 

discriminative power through ROC–AUC to reflect the model’s ability to separate dropout 

and graduate outcomes across decision thresholds [23], [24]. The stacking ensemble’s 

results are also compared to individual base learners to quantify performance gains 

attributable to ensembling and to verify that improvements are consistent rather than 

incidental. In addition to predictive metrics, evaluation also considers interpretability 

requirements. Feature influence is examined using feature importance analysis to 

identify the most impactful academic and socioeconomic predictors. This interpretability-

oriented evaluation supports institutional actionability by revealing which student 

attributes contribute most strongly to risk classification, enabling interventions that are 

targeted, transparent, and aligned with academic advising practices. 

 

3. RESULTS AND DISCUSSION 

 

3.1. Dataset Characteristics 

The final dataset comprises 3,630 student records representing demographic, academic, 

and economic attributes. Most students are unmarried and enrolled in daytime classes, 

with an average previous qualification grade of 132.92, indicating generally strong prior 

academic performance. Academic indicators show mean values of 273.75 and 256.58 for 

first- and second-semester grades, respectively, with an overall average grade of 265.17. 

Success rates average 0.70 in the first semester and 0.66 in the second semester, 

suggesting a moderate decline in academic performance over time. From a 
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socioeconomic perspective, the economic_health variable has a mean value of –12.87, 

reflecting heterogeneous financial conditions among students. The target distribution 

indicates that 60.9% of students graduate, while 39.1% drop out, confirming the presence 

of class imbalance and justifying the application of resampling techniques during 

preprocessing. Overall, the diversity and variability of features support the use of an 

ensemble learning approach to capture complex, nonlinear relationships in dropout 

prediction. Figure 2 illustrates the class distribution, showing a higher proportion of 

graduate students compared to dropouts. This imbalance highlights the need for 

appropriate class-balancing strategies to prevent biased model learning. 

 

 
Figure 2. Proportion of Student Status 

 

The visualization in Figure 2 presents the distribution and proportion of student status 

based on their final academic outcomes. The bar chart on the left shows that 2,209 

students graduated, while 1,421 students dropped out, indicating a class imbalance 

between the two categories. The pie chart on the right further clarifies this proportion, 

with 60.9% of students graduating and 39.1% dropping out. This imbalance in distribution 

is an important consideration in the data preprocessing stage, particularly in handling 

class imbalance prior to the model training process. 

 

Figure 3 presents the correlation matrix for the most influential features. Early academic 

indicators—success_rate_1st_sem, success_rate_2nd_sem, total_units_approved, and 

avg_grade—exhibit the strongest positive correlations with the target variable (r = 0.55–

0.74). In contrast, demographic variables such as age at enrollment, gender, and debtor 

status display weak negative correlations, indicating limited predictive contribution 
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relative to academic performance. The dataset exhibits clear class imbalance and strong 

variability across academic, demographic, and socioeconomic features. Early academic 

performance indicators dominate the correlation structure, while demographic variables 

contribute marginally. These characteristics justify both the application of class-

balancing techniques and the use of an ensemble modeling strategy to capture complex 

relationships underlying student dropout risk. 

 

 
Figure 3. Correlation Matrix - Top 15 most influential features 

 

3.2. Feature Engineering 

Figure 4 presents the outcomes of the feature engineering stage, where five composite 

variables were created to summarize students’ academic progression and socioeconomic 

conditions in a compact, interpretable form. This step reduces redundancy among 
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semester-level indicators while keeping the signals that matter most for dropout 

prediction—particularly early academic momentum and financial vulnerability. The 

engineered features were designed to be both model-friendly and institution-friendly, 

meaning they can support accurate prediction while remaining easy to translate into 

early-warning rules and intervention triggers. 

 

 
Figure 4. Feature Engineering 

 

Two features capture cumulative academic performance. total_units_approved 

represents overall workload completion across the first two semesters, while avg_grade 

summarizes achievement across the same period. In Figure 4, both show distributions 

approaching normality, indicating stable central tendencies and making them reliable 

summary indicators of progress and performance. In contrast, success_rate_1st_sem and 

success_rate_2nd_sem—the proportions of approved units relative to enrolled units—

show clear bimodal patterns clustered near 0 and 1. This polarization suggests strong 

discriminative value: students tend to fall into “consistently progressing” versus 

“struggling/unstable” trajectories, which is precisely the behavioral split an early warning 

system needs to detect. 
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The socioeconomic indicator economic_health, constructed from tuition payment status, 

scholarship status, and debtor status, displays a multimodal distribution in Figure 4, 

reflecting distinct financial profiles within the student population. Overall, these 

engineered variables condense high-dimensional academic and financial information into 

transparent indicators that highlight early trajectory disruption and financial strain as 

primary dropout signals, strengthening both predictive relevance and interpretability. 

 

3.3. Handling Imbalanced Data 

Figure 5 shows the effect of applying SMOTE–Tomek to address the original class 

imbalance in the dataset (60.8% Graduate vs. 39.2% Dropout). Because standard classifiers 

tend to favor the majority class, this imbalance can lead to a model that appears accurate 

overall but performs poorly in detecting dropout cases—the group that matters most for 

an early warning system. To reduce this bias, SMOTE–Tomek was used as a hybrid 

resampling strategy: SMOTE generates synthetic examples of the minority class 

(Dropout), while Tomek Links removes ambiguous samples near overlapping class 

boundaries, effectively cleaning borderline noise and sharpening separation between 

classes. 

 

 
Figure 5. Handling Imbalanced Data using Smote-tomek 

 

As illustrated in Figure 5, the resampling process produces a balanced class ratio of 

50%:50%, ensuring that dropout patterns are represented as strongly as graduate 

patterns during training. This balanced representation improves the model’s ability to 

learn minority-class characteristics and typically strengthens performance on dropout-

focused metrics such as recall and F1-score, which are critical for institutional 

deployment. In practice, higher recall means fewer at-risk students are missed, while a 
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stronger F1-score indicates a better balance between correctly identifying dropout cases 

and avoiding excessive false alarms. 

 

3.4. Model Evaluation 

The proposed Stacking Ensemble Learning model was evaluated to determine whether it 

can function as a reliable early warning mechanism for identifying students at risk of 

dropping out while keeping false alarms at a manageable level. Evaluation focuses on 

three complementary views of performance: (1) error structure through the confusion 

matrix (how the model succeeds or fails for each class), (2) class-wise effectiveness using 

precision, recall, and F1-score, and (3) threshold-independent discrimination using ROC–

AUC. In addition, the Matthews Correlation Coefficient (MCC) is reported to provide a 

balanced single-number summary that accounts for all outcomes in the confusion matrix. 

 

3.4.1. Confusion Matrix 

The confusion matrix provides the most operationally meaningful view of model behavior 

because it shows how often the system correctly flags dropout cases and how often it 

either misses at-risk students or raises unnecessary alerts. The model achieves 90.91% 

accuracy, correctly classifying 660 out of 726 instances. Its errors are asymmetric in a 

way that is generally favorable for institutional deployment: false positives are low, 

meaning the system does not overwhelm staff with unnecessary interventions, while 

recall for dropout remains strong enough to support proactive outreach. 

 

 
Figure 6. Confusion Matrix Analysis 
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Figure 6 shows that the model correctly identifies 238 dropout students (true positives) 

and misses 46 dropout students (false negatives). In percentage terms, 83.8% of dropout 

cases are detected, while 16.2% are not flagged. For graduates, the model correctly 

classifies 422 students (true negatives) and incorrectly flags 20 graduates as dropout 

(false positives), which corresponds to 95.5% correct graduate identification and only 

4.5% false alarms. This profile indicates a practical balance: the model detects most at-

risk students while keeping unnecessary intervention workload relatively low. 

 

3.4.2. Classification Reports 

While the confusion matrix highlights the pattern of errors, the classification report 

quantifies performance in a standardized way that is easier to compare across studies 

and models. Precision reflects how trustworthy the “at-risk” flag is, recall reflects how 

many at-risk students are actually captured, and F1-score balances both. In early warning 

contexts, recall for the Dropout class is particularly important because missed cases 

represent students who may not receive timely support. 

 

Table 6 shows that the Dropout class achieves precision = 0.9225, recall = 0.8380, and F1-

score = 0.8782. This means that when the model predicts dropout, it is correct most of 

the time, and it successfully captures the majority of actual dropout cases. The Graduate 

class achieves precision = 0.9017, recall = 0.9548, and F1-score = 0.9275, indicating strong 

stability in identifying students who complete their studies. Macro and weighted averages 

confirm that performance is balanced across classes rather than being driven by one 

class only. 

Tabel 6. Classification Report 

Class Precision Recall F1-Score Support 

Dropout 0.9225 0.8380 0.8782 284 

Graduate 0.9017 0.9548 0.9275 442 

Accuracy 0.9091 0.9091 0.9091 0.9091 

Macro Avg 0.9121 0.8964 0.9029 726 

Weighted Avg 0.9098 0.9091 0.9082 726 

 

3.4.3. ROC-AUC 

Because institutions may adjust the decision threshold depending on available resources 

(e.g., how many students can be supported each semester), it is important to verify that 
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the model discriminates well across thresholds—not only at one fixed cut-off. ROC–AUC 

evaluates this threshold-independent separation between Dropout and Graduate 

outcomes. Figure 7 shows an AUC of 0.9572, which indicates excellent discriminative 

capability. The curve remains near the upper-left area, reflecting a strong true positive 

rate with a low false positive rate across a wide range of thresholds. The selected 

operating threshold of 0.464 represents a balanced point: lowering the threshold would 

capture more at-risk students (higher recall) but increase false positives and staff 

workload, while raising it would reduce false positives but risk missing more dropout 

cases. The chosen threshold supports preventive intervention by maintaining strong 

detection while keeping false alarms manageable. 

 

 
Figure 7. ROC-AUC analysis of Stacking Classifier 

 

3.4.4. Matthews Correlation Coefficient (MCC) 

o complements the above metrics, the MCC is reported as a balanced measure that 

considers true positives, true negatives, false positives, and false negatives 

simultaneously. The model achieves an MCC of 0.82, indicating strong agreement between 
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predicted and actual labels. This reinforces that performance is not inflated by class 

distribution effects and remains stable across both outcome groups, strengthening the 

model’s suitability for early warning deployment where misclassification costs are not 

equal. 

 

3.5. Discussion 

The findings of this study confirm that a stacking-based ensemble architecture can 

deliver strong predictive performance while still producing outputs that are meaningful 

for institutional decision-making. The proposed Stacking Ensemble Learning model 

achieves 90.91% accuracy, an ROC–AUC of 0.9572, and an MCC of 0.82, indicating both 

high discrimination and stable agreement between predicted and actual outcomes. 

Importantly, the error structure is operationally acceptable for early warning use: the 

model keeps false alarms relatively low (20 false positives) while still detecting the 

majority of at-risk students (238 true positives, with 46 false negatives). This balance 

matters in practice because universities must identify enough at-risk students to justify 

intervention programs without overwhelming academic support units with excessive 

alerts. 

 

From an interpretability standpoint, the feature importance results reinforce a consistent 

message in recent dropout prediction research: early academic trajectory dominates risk 

explanation. Variables such as first- and second-semester success rates, total approved 

units, and average grades emerge as the most influential predictors, showing that 

dropout risk is strongly shaped by whether students build early academic momentum. 

This is aligned with [1], who emphasize that explainable AI is most valuable when it 

highlights factors that institutions can act on for personalized intervention. The 

dominance of cumulative and early-semester performance indicators also supports the 

observations reported by [2] and [3], where academic progress measures consistently 

outperform demographic and macroeconomic attributes in classifying at-risk students. 

In practical terms, this study strengthens the argument that early warning systems 

should prioritize first-year trajectory monitoring—particularly credit completion 

consistency and early course success—because these signals offer both predictive power 

and clear intervention pathways (e.g., tutoring, course redesign, academic advising, or 

structured study support). 
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Methodologically, the results provide evidence that stacking improves reliability beyond 

what single learners typically achieve by combining complementary strengths across 

different algorithms. This supports the argument by [20] that two-layer ensemble 

strategies can reduce generalization error by leveraging diverse inductive biases—here 

represented by Random Forest’s robustness, Gradient Boosting’s iterative correction, and 

XGBoost’s strong optimization—then integrating them through a Logistic Regression 

meta-learner. The high ROC–AUC value further aligns with [25], who report that stacking 

frameworks often perform particularly well in complex classification tasks with 

heterogeneous feature types. In this study, the practical benefit of stacking is visible in 

the balanced precision–recall tradeoff: dropout predictions maintain high precision while 

preserving meaningful recall, which is essential when the cost of missing at-risk students 

(false negatives) can be higher than the cost of issuing limited false alerts. 

 

The improvement in minority-class detection is also closely linked to the preprocessing 

strategy. The use of SMOTE–Tomek Links addresses not only the class ratio problem but 

also the quality of the decision boundary by removing borderline overlap. Similar to the 

trends reported by [18], balancing the dataset supports stronger dropout recall without 

driving false positives to an impractical level. This matters for deployment because 

institutional early warning systems must reliably detect dropout risk patterns that may 

otherwise be underrepresented during training, especially when the graduate class is 

dominant. By reducing boundary noise, the model becomes more stable when exposed 

to new cohorts, making predictions less sensitive to small shifts in student profiles. 

 

This study contributes to the literature by demonstrating a practical bridge between 

performance and usability: stacking ensemble learning provides strong predictive 

capability, while feature engineering and importance analysis translate model behavior 

into actionable risk signals that align with how universities design interventions. At the 

same time, several considerations remain important for interpretation and future work. 

The binary formulation excludes the “Enrolled” group, which improves label clarity but 

may reduce exposure to transitional trajectories; future studies could explore time-to-

event or multi-class approaches to capture uncertainty during ongoing study status. In 

addition, expanding validation across institutional contexts—particularly within 

Indonesian STEM programs—would further strengthen external validity and support 

implementation as a scalable, policy-relevant early warning tool. 
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4. CONCLUSION 

 

This study shows that Stacking Ensemble Learning can predict STEM student dropout 

accurately and provide usable insights for early intervention. The proposed model 

achieves 90.91% accuracy and a ROC–AUC of 0.9572, indicating strong class separation. 

Combining Random Forest, Gradient Boosting, and XGBoost with a Logistic Regression 

meta-learner captures complementary patterns, while SMOTE–Tomek Links helps address 

class imbalance and improves detection of dropout cases. Feature importance results 

consistently point to early academic trajectory signals—especially first- and second-

semester success rates, total approved units, and average grades—as the most influential 

predictors, making the model suitable as an interpretable early warning component in 

academic information systems. 

 

Key limitations include reliance on a single-source dataset, exclusion of 

qualitative/behavioral factors (e.g., motivation, engagement), and limited individual-level 

transparency despite global feature importance; the binary setup also omits “Enrolled” 

cases, which may contain transitional patterns. Future work should validate the approach 

on multi-institutional/longitudinal data, integrate multimodal indicators (e.g., LMS activity), 

and apply SHAP or counterfactual explanations to strengthen case-level interpretability. 
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