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Abstract. Student dropout in STEM programs remains a persistent
challenge for higher education institutions, reducing educational
quality, weakening retention outcomes, and increasing
inefficiencies in resource utilization. This study develops an
interpretable Stacking Ensemble Learning approach to predict STEM
student dropout risk and identify key academic and socioeconomic
determinants that can support data-driven early intervention.
Following the CRISP-DM framework, we analyze 3,630 student
records from the UCI Machine Learning Repository containing
demographic, academic, and socioeconomic attributes. The
proposed stacking architecture combines Random Forest, Gradient
Boosting, and XGBoost as base learners with Logistic Regression as
a2 meta-learner, while SMOTE-Tomek Links is employed to address
class imbalance and reduce boundary noise. Experimental results
show that the model achieves strong predictive performance with
90.91% accuracy and ROC-AUC of 9572%, demonstrating stable
discrimination and outperforming individual base models. Feature
importance analysis indicates that early academic trajectory
variables—especially First- and second-semester success rates, total
approved units, and average grades—are the most influential
predictors of dropout risk. The proposed framework contributes a
practical, interpretable early warning model by integrating stacking
ensemble learning with imbalance handling and trajectory-based
Feature engineering, supporting actionable intervention planning in
higher education.
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1 INTRODUCTION

Student dropout in STEM programs remains a persistent and high-impact challenge for
higher education institutions, especially in Indonesia where national policies increasingly
tie institutional accountability to graduation rates, retention, and data-driven quality
assurance. When STEM students discontinue their studies, the consequences extend
beyond individual academic trajectories: institutions lose tuition revenue and efficiency
in resource allocation, program performance indicators weaken, and the national agenda
to build digitally capable, industry-ready human capital is slowed. In this context, reducing
dropout is not only an educational concern but also a strategic requirement linked to
accreditation outcomes, institutional performance evaluation, and government-driven

initiatives that prioritize timely completion and improved academic services.

Despite this urgency, dropout in academically demanding STEM programs is shaped by
interacting factors that universities often struggle to monitor early and consistently. The
simultaneous decline in enrollment and the rise in dropout rates underscore how
socioeconomic constraints and academic performance can combine to disrupt students’
continuity while also reducing institutional efficiency [1l. Beyond institutional metrics,
dropout also affects educational quality, human resource development, Financial
sustainability, and graduates’ competitiveness in the labor market [2]. These realities make
early identification of at-risk students a practical necessity: the earlier universities can
detect risk, the more feasible it becomes to deliver targeted academic support, Financial

guidance, and advising interventions before students disengage irreversibly.

Recent advances in Artificial Intelligence (Al) and Machine Learning (ML) have expanded
the Feasibility of analyzing large-scale academic records to predict dropout risk.
Accordingly, many studies model dropout prediction as a binary classification task and
report promising performance using various ML algorithms [3] [4]. However, much of this
work emphasizes predictive accuracy as the primary objective, often leaving a critical
institutional need insufficiently addressed: interpretability. For academic leaders and
program managers, knowing who is at risk is not enough—effective policy and
intervention design requires understanding why students are at risk, which Factors are

most influential, and how those Ffactors can be translated into actionable support
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strategies. Without interpretable evidence, even high-performing predictive models may

remain underutilized in real academic decision-making.

Ensemble learning offers a strong pathway to improve robustness and generalization by
combining multiple models rather than relying on a single learner [5]. Among ensemble
approaches, Stacking Ensemble Learning (SEL) integrates diverse base learners and
optimizes their combined output through a meta-learner—commonly Logistic
Regression—to improve accuracy and stability [6]. Although SEL has demonstrated strong
performance in educational analytics, its use for STEM dropout prediction with explicit
attention to interpretability and operational deployment remains limited, particularly
within Indonesian higher education settings. This gap matters because institutional
adoption depends not only on performance metrics but also on transparent explanations

that align with advising workFflows, policy targets, and quality assurance requirements.

To address this gap, this study develops an interpretable Stacking Ensemble Learning
model For predicting STEM student dropout risk while simultaneously identifying key
academic and socioeconomic determinants. Using the CRISP-DM Fframework, the
proposed approach integrates Random Forest, Gradient Boosting, and XGBoost as base
learners with Logistic Regression as a meta-learner, and applies SMOTE-Tomek Links to
mitigate class imbalance and improve minority-class discrimination. Experimental results
demonstrate strong predictive performance, achieving 90.91% accuracy and a ROC-AUC
of 95.72%, while maintaining stable class separation. Beyond performance, the novelty of
this work lies in pairing a high-performing SEL architecture with an interpretability-driven
analysis that surfaces concrete, institutionally meaningful drivers of risk—bridging the

common disconnect between model accuracy and decision usability in prior studies.

The contributions of this research are threefold. First, it implements a stacking ensemble
that combines Random Forest, XGBoost, and Gradient Boosting to enhance predictive
performance for STEM dropout classification in an Indonesian university context. Second,
it prioritizes interpretability through Feature importance analysis to clarify which
academic and non-academic variables most strongly influence dropout risk, supporting
explainable early-warning decisions rather than opaque predictions. Third, it translates
the model's insights into strategic guidance for universities to design data-driven

intervention programs aligned with retention targets and national quality assurance
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priorities. Feature importance results emphasize early academic trajectory indicators—

particularly First- and second-semester success rates, total approved units, and average
grades—as the most influential predictors of dropout risk, reinforcing the practical value
of embedding the model into academic information systems as an actionable early

warning tool.
2. METHODS

This study adopts the CRISP-DM (Cross-Industry Standard Process for Data Mining)
Framework because it offers a well-established, industry-standard methodology for
organizing machine learning and data mining work into a clear, auditable, and repeatable
process [7]. CRISP-DM is particularly suitable for educational prediction tasks because it
connects technical modeling choices (e.g, feature engineering, imbalance handling,
algorithm selection) to institutional goals (eg, early warning and intervention).
Importantly, CRISP-DM is iterative: insights Ffrom evaluation can trigger revisions to
earlier stages (such as redefining success criteria, improving data preprocessing, or
refining features), supporting continuous model improvement rather than a one-pass
pipeline [8]. The six interconnected phases used in this study are summarized in Figure 1

and operationalized through the activities described in the following subsections.

Evaluation (5)

Performance Metrics —p Deployment (6} N
»| (Accuracy, F1, ROC-AUC) S
Model Interpretation S ves—— Data Uncerstanding (2) \
-
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Figure 1. CRISP-DM Methodological Framework for Predicting Students’ Academic and

Data Preparation (3)

Business Understanding (1)

»

Socioeconomic Performance

CRISP-DM was selected because it is comprehensive yet Flexible, enabling systematic
planning while remaining adaptable to the practical issues commonly encountered in real
datasets—missing values, noisy labels, class imbalance, and multicollinearity. Its phase-

by-phase structure also helps ensure methodological transparency, which is essential
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when developing decision-support tools in higher education environments where model

outputs must be interpretable and actionable. Table 1 presents the CRISP-DM phases and

their core objectives, which guide the overall workflow in this research.

Table 1. CRISP-DM Process Stages

Phase Brief Description
Business Define business and data mining objectives and establish
Understanding project success criteria.
Data Understanding Collect, explore, and verify data quality.
Data Preparation Select, clean, and transform data to make it suitable for
modeling.
Modelling Select modeling techniques, build models, and adjust

parameters to achieve optimal results.

Evaluation Evaluate models against business objectives and

predetermined criteria.

Deployments Implement models in the form of ready-to-use reports,

systems, or applications.

The mapping between CRISP-DM phases and the structure of this paper is provided in
Table 4 to maintain traceability between methodological stages and reported outcomes,
ensuring that each modeling decision can be connected back to a specific phase and

objective.

2.1. Business Understanding

The business understanding phase clarifies the problem definition, translates institutional
needs into analytical goals, and defines measurable success criteria for the project [10].
In this study, the primary objective is to develop a predictive system that classifies
student outcomes as Dropout or Graduate using a Stacking Ensemble Learning approach.
The practical motivation is to support higher education institutions in early identification
of at-risk students and to strengthen data-driven decision-making For improving

graduation outcomes and retention strategies.
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Success criteria are established in two complementary dimensions. First, the model must

achieve competitive predictive performance aligned with benchmarks reported in
comparable dropout prediction research (e.g, robust accuracy and discriminative power).
Second, the model must support institutional usability by producing outputs that can
inform intervention planning—meaning that interpretability is treated as a requirement
rather than an optional add-on. This phase therefore defines a dual target: high
classification performance and clear identification of key drivers that universities can

act upon.

2.2, Data Understanding

This study uses the Predict Students' Dropout and Academic Success dataset from the
UCI Machine Learning Repository [11]. The original dataset contains 4,424 student records
and 37 variables spanning demographic, academic, admission-related, and macroeconomic
attributes, along with a target label representing academic status. To formulate a clear
supervised learning task with verified outcomes, records labeled “Enrolled” were excluded,
producing 3,630 samples for binary classification. The retained dataset includes
demographic variables (e.g, gender, age at enrollment, marital status, application mode),
First- and second-semester academic variables (e.g, enrolled units, evaluations, approved
units, grades), admission variables (e.g, admission grade, attendance regime),
macroeconomic indicators (e.g, unemployment rate, inflation rate, GDP), and the target

variable (Graduate/Dropout). The class distribution before and after Filtering is reported

in Table 2.
Table 2. Distribution of Target Variables Before and After Filtering
Status Before Filtering Percentage AFter Filtering Percentage
Graduate 2,209 49.93% 2,209 60.88%
Dropout 1,421 3212% 1,421 39.12%
Enrolled 794 17.95% - -
Total 4,424 100% 3,630 100%

Exploratory Data Analysis (EDA) is conducted to understand variable distributions, detect
anomalies, and identify early signals associated with dropout [12]. Descriptive statistics

summarize central tendency and dispersion for numerical features and provide
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Frequency/proportion summaries For categorical attributes. Additionally, correlation

analysis (via a Pearson correlation matrix) is used to examine linear relationships among
numerical variables and to flag potential multicollinearity concerns. A multicollinearity
threshold is applied to identify highly correlated features—particularly among semester-
based academic indicators such as approved units and grades—which are also among the
most strongly associated with the target outcome [13]. These insights guide subsequent
Feature engineering and selection decisions in the Data Preparation phase. To improve
interpretability and reduce dimensionality while preserving meaningful structure, several
engineered features are constructed to summarize cumulative academic progress, early
trajectory patterns, and financial condition. Table 3 lists the engineered features used,

including their source variables and analytical intent.

Table 3. Summary of Engineered Features

Engineered Feature Source Variables Data Type  Analytical Purpose

Curricular units 1st sem
Capture cumulative
total_units_approved (approved), Curricular units Numerical
academic progress
2nd sem (approved)

Curricular units 1st sem Represent overall
avg_grade (grade), Curricular units 2nd Numerical academic
sem (grade) achievement

Curricular units 1st sem
Measure early
success_rate_1st_sem (approved), Curricular units Numerical
academic success
1st sem (enrolled)

Curricular units 2nd sem Capture
success_rate_2nd_sem (approved), Curricular units Numerical continuation of
2nd sem (enrolled) academic trajectory

Summarize students’
Debtor, Tuition fees up to
economic_health Numerical socioeconomic
date, Scholarship holder
condition

2.3. Data Preparation
Data preparation transforms raw data into a modeling-ready format through cleaning,
encoding, transformation, and imbalance handling. Consistent with CRISP-DM, this phase

includes data quality checks, selection of relevant attributes, and feature construction
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aligned with the research goals. Categorical variables are encoded to ensure compatibility

with tree-based learners and the meta-learner, while numerical features may be
normalized or standardized depending on modeling requirements and stability
considerations. These preprocessing steps support robust learning and reduce the risk
of distorted model behavior due to scale differences, noisy categories, or sparsity [19],

[20].

Because dropout prediction datasets often exhibit class imbalance—where one class
(typically graduates) is more frequent—this study applies SMOTE-Tomek Links as a hybrid
sampling strategy to both oversample the minority class and remove ambiguous
borderline instances. This approach helps improve minority-class sensitivity while
simultaneously reducing overlap and noise between classes, which can otherwise inflate
accuracy while masking poor dropout detection. The use of SMOTE-Tomek Links is
aligned with best practices for imbalanced classification in educational data mining and

improves the model's ability to discriminate dropout cases reliably [21].

Feature engineering (Table 2) is applied during this phase to reduce redundancy among
strongly correlated semester-level variables and to capture more policy-relevant
constructs such as early success rates and cumulative progress. These engineered
indicators are designed to be more interpretable for academic stakeholders, enabling
direct translation into intervention logic (e.g, first-year performance monitoring, credit
accumulation thresholds, financial risk screening). The resulting dataset is then finalized

for modeling.

2.4, Modeling

In the modeling phase, multiple algorithms are trained and combined using Stacking
Ensemble Learning, which aims to improve predictive accuracy and robustness by
integrating complementary strengths from different learners [22]. This study employs
Random Forest, Gradient Boosting, and XGBoost as base models because they perform
strongly on structured tabular data, capture nonlinear relationships, and handle complex
interactions among academic, demographic, and socioeconomic variables. The outputs of
these base learners are then combined by a Logistic Regression meta-learner, selected
For its stability and interpretability when learning optimal weights from the base models’

predictions.
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To ensure a valid stacking procedure and reduce overfitting, the stacking pipeline uses

cross-validation to generate out-of-fold predictions from the base learners for training
the meta-learner. This approach prevents information leakage because the meta-learner
is trained on predictions produced from validation folds rather than on in-sample
predictions. In this study, the Stacking Classifier is configured with 5-fFold cross-validation
(cv = 5) and uses the auto stack method, enabling the framework to select an appropriate
stacking strategy based on the prediction outputs. This design strengthens generalization

and improves the reliability of the final model when applied to unseen student records.

Hyperparameters for each component model are specified to balance predictive
performance and stability while maintaining reproducibility. All models use a consistent
random_state = 42 to ensure that results can be replicated across runs. The Random
Forest is configured with 100 trees (n_estimators = 100) and a maximum depth of 10
(max_depth = 10) to control model complexity while capturing meaningful Feature
interactions. Gradient Boosting uses 100 estimators, a learning rate of 0.1, and maximum
depth of 5 to enable incremental error correction without excessive variance. XGBoost
is similarly set to 100 estimators, a learning rate of 0.1, and maximum depth of 5, with log
loss as the evaluation metric to optimize probabilistic classification quality. The Logistic
Regression meta-learner is configured with maximum iterations of 1000 to ensure
convergence and applies L2 regularization (default) to reduce overfitting and stabilize

learned coefficients. The Full hyperparameter configuration is summarized in Table 5.

Table 5. Hyperparameter Configuration of the Stacking Ensemble Model

Model Hyperparameter Value

Number of trees (n_estimators) 100

Random Forest Maximum depth (max_depth) 10
Random state 42

Number of estimators 100

Learning rate 0.1

Gradient Boosting

Maximum depth 5

Random state 42

Number of estimators 100

XGBoost Learning rate 0.1
Maximum depth 5
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Model Hyperparameter Value
Evaluation metric Log loss
Random state 42
Maximum iterations 1000
Logistic Regression
Regularization L2 (default)
(Meta-learner)
Random state 42
Cross-validation Folds (cv) 5
Stacking Classifier
Stack method Auto

2.5. Evaluation

Model evaluation assesses whether the developed solution meets both technical
performance targets and institutional decision-support needs. Performance is evaluated
using standard classification metrics, emphasizing not only overall accuracy but also
discriminative power through ROC-AUC to reflect the model's ability to separate dropout
and graduate outcomes across decision thresholds [23], [24]. The stacking ensemble’s
results are also compared to individual base learners to quantify performance gains
attributable to ensembling and to verify that improvements are consistent rather than
incidental. In addition to predictive metrics, evaluation also considers interpretability
requirements. Feature influence is examined using feature importance analysis to
identify the most impactful academic and socioeconomic predictors. This interpretability-
oriented evaluation supports institutional actionability by revealing which student
attributes contribute most strongly to risk classification, enabling interventions that are

targeted, transparent, and aligned with academic advising practices.

3. RESULTS AND DISCUSSION

3.1. Dataset Characteristics

The final dataset comprises 3,630 student records representing demographic, academic,
and economic attributes. Most students are unmarried and enrolled in daytime classes,
with an average previous qualification grade of 132.92, indicating generally strong prior
academic performance. Academic indicators show mean values of 273.75 and 256.58 for
First- and second-semester grades, respectively, with an overall average grade of 265.17.
Success rates average 0.70 in the first semester and 0.66 in the second semester,

suggesting a moderate decline in academic performance over time. From a
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socioeconomic perspective, the economic_health variable has a mean value of -12.87,
reflecting heterogeneous financial conditions among students. The target distribution
indicates that 60.9% of students graduate, while 39.1% drop out, confirming the presence
of class imbalance and justifying the application of resampling techniques during
preprocessing. Overall, the diversity and variability of features support the use of an
ensemble learning approach to capture complex, nonlinear relationships in dropout
prediction. Figure 2 illustrates the class distribution, showing a higher proportion of
graduate students compared to dropouts. This imbalance highlights the need Ffor

appropriate class-balancing strategies to prevent biased model learning.

Target Variable Distribution Target Variable Proportion

2000 4

1500 A Dropout

Count

1000 A

Graduate

500 -

&
&
0‘0

Status

Figure 2. Proportion of Student Status

The visualization in Figure 2 presents the distribution and proportion of student status
based on their final academic outcomes. The bar chart on the left shows that 2,209
students graduated, while 1,421 students dropped out, indicating a class imbalance
between the two categories. The pie chart on the right further clarifies this proportion,
with 60.9% of students graduating and 39.1% dropping out. This imbalance in distribution
is an important consideration in the data preprocessing stage, particularly in handling

class imbalance prior to the model training process.

Figure 3 presents the correlation matrix for the most influential Features. Early academic
indicators—success_rate_1st_sem, success_rate_2nd_sem, total_units_approved, and
avg_grade—exhibit the strongest positive correlations with the target variable (r = 0.55-
0.74). In contrast, demographic variables such as age at enrollment, gender, and debtor

status display weak negative correlations, indicating limited predictive contribution
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relative to academic performance. The dataset exhibits clear class imbalance and strong

variability across academic, demographic, and socioeconomic features. Early academic
performance indicators dominate the correlation structure, while demographic variables
contribute marginally. These characteristics justify both the application of class-
balancing techniques and the use of an ensemble modeling strategy to capture complex

relationships underlying student dropout risk.
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Figure 3. Correlation Matrix - Top 15 most influential features

3.2. Feature Engineering
Figure 4 presents the outcomes of the feature engineering stage, where five composite
variables were created to summarize students' academic progression and socioeconomic

conditions in a compact, interpretable form. This step reduces redundancy among
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semester-level indicators while keeping the signals that matter most For dropout

prediction—particularly early academic momentum and Ffinancial vulnerability. The
engineered features were designed to be both model-friendly and institution-Friendly,
meaning they can support accurate prediction while remaining easy to translate into

early-warning rules and intervention triggers.
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Figure 4. Feature Engineering

Two features capture cumulative academic performance. total_units_approved
represents overall workload completion across the first two semesters, while avg_grade
summarizes achievement across the same period. In Figure 4, both show distributions
approaching normality, indicating stable central tendencies and making them reliable
summary indicators of progress and performance. In contrast, success_rate_1st_sem and
success_rate_2nd_sem—the proportions of approved units relative to enrolled units—
show clear bimodal patterns clustered near O and 1. This polarization suggests strong
discriminative value: students tend to Ffall into “consistently progressing” versus
“struggling/unstable” trajectories, which is precisely the behavioral split an early warning

system needs to detect.

David Vernando Baridji Alfiansyah Hasibuan, et al | 468



Vol. 8, No. 1, February 2026
;f _Published By
n%&r?.{ ion Systems and Informatics .l 2 Aiotiesitole

The socioeconomic indicator economic_health, constructed from tuition payment status,

scholarship status, and debtor status, displays a multimodal distribution in Figure 4,
reflecting distinct Ffinancial profiles within the student population. Overall, these
engineered variables condense high-dimensional academic and financial information into
transparent indicators that highlight early trajectory disruption and Financial strain as

primary dropout signals, strengthening both predictive relevance and interpretability.

3.3. Handling Imbalanced Data

Figure 5 shows the effect of applying SMOTE-Tomek to address the original class
imbalance in the dataset (60.8% Graduate vs. 39.2% Dropout). Because standard classifiers
tend to Favor the majority class, this imbalance can lead to a model that appears accurate
overall but performs poorly in detecting dropout cases—the group that matters most for
an early warning system. To reduce this bias, SMOTE-Tomek was used as a hybrid
resampling strategy: SMOTE generates synthetic examples of the minority class
(Dropout), while Tomek Links removes ambiguous samples near overlapping class
boundaries, effectively cleaning borderline noise and sharpening separation between

classes.

Before SMOTE-Tomek After SMOTE-Tomek

g

1726
(50.0%)

g

1750
— 1500
3 3
a a 1
£ 1250 2 1250
) B
S 1000 S 1000
S ]
£ £
-] S 750
i >
500 500
250 250
) ) |

Graduate Dropout

Graduate Dropout

Figure 5. Handling Imbalanced Data using Smote-tomek

As illustrated in Figure 5, the resampling process produces a balanced class ratio of
50%:50%, ensuring that dropout patterns are represented as strongly as graduate
patterns during training. This balanced representation improves the model's ability to
learn minority-class characteristics and typically strengthens performance on dropout-
Focused metrics such as recall and Fl-score, which are critical for institutional

deployment. In practice, higher recall means fewer at-risk students are missed, while a
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stronger F1-score indicates a better balance between correctly identifying dropout cases

and avoiding excessive false alarms.

3.4. Model Evaluation

The proposed Stacking Ensemble Learning model was evaluated to determine whether it
can function as a reliable early warning mechanism for identifying students at risk of
dropping out while keeping false alarms at @ manageable level. Evaluation focuses on
three complementary views of performance: (1) error structure through the confusion
matrix (how the model succeeds or Ffails for each class), (2) class-wise effectiveness using
precision, recall, and F1-score, and (3) threshold-independent discrimination using ROC-
AUC. In addition, the Matthews Correlation Coefficient (MCC) is reported to provide a

balanced single-number summary that accounts For all outcomes in the confusion matrix.

3.4.1. Confusion Matrix

The confusion matrix provides the most operationally meaningful view of model behavior
because it shows how often the system correctly flags dropout cases and how often it
either misses at-risk students or raises unnecessary alerts. The model achieves 90.91%
accuracy, correctly classifying 660 out of 726 instances. Its errors are asymmetric in a
way that is generally favorable for institutional deployment: False positives are low,
meaning the system does not overwhelm staff with unnecessary interventions, while

recall for dropout remains strong enough to support proactive outreach.

Confusion Matrix (Counts) Confusion Matrix (P

400
350
46
300
250
<
K
E
3
200
150
°
g
3 20
J 100
50

Dropout Graduate Dropout Graduate
Predicted Class Predicted Class

Figure 6. Confusion Matrix Analysis
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Figure 6 shows that the model correctly identifies 238 dropout students (true positives)

and misses 46 dropout students (False negatives). In percentage terms, 83.8% of dropout
cases are detected, while 16.2% are not flagged. For graduates, the model correctly
classifies 422 students (true negatives) and incorrectly flags 20 graduates as dropout
(False positives), which corresponds to 95.5% correct graduate identification and only
45% False alarms. This profile indicates a practical balance: the model detects most at-

risk students while keeping unnecessary intervention workload relatively low.

3.4.2. Classification Reports

While the confusion matrix highlights the pattern of errors, the classification report
quantifies performance in a standardized way that is easier to compare across studies
and models. Precision reflects how trustworthy the “at-risk” flag is, recall reflects how
many at-risk students are actually captured, and F1-score balances both. In early warning
contexts, recall for the Dropout class is particularly important because missed cases

represent students who may not receive timely support.

Table 6 shows that the Dropout class achieves precision = 0.9225, recall = 0.8380, and F1-
score = 0.8782. This means that when the model predicts dropout, it is correct most of
the time, and it successfully captures the majority of actual dropout cases. The Graduate
class achieves precision = 0.9017, recall = 0.9548, and F1-score = 0.9275, indicating strong
stability in identifying students who complete their studies. Macro and weighted averages

confirm that performance is balanced across classes rather than being driven by one

class only.
Tabel 6. Classification Report
Class Precision Recall F1-Score Support
Dropout 0.9225 0.8380 0.8782 284
Graduate 0.9017 0.9548 0.9275 442
Accuracy 0.9091 0.9091 0.9091 0.9091
Macro Avg 0.9121 0.8964 0.9029 726
Weighted Avg 0.9098 0.9091 0.9082 726

3.4.3. ROC-AUC
Because institutions may adjust the decision threshold depending on available resources

(e.g, how many students can be supported each semester), it is important to verify that
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the model discriminates well across thresholds—not only at one Fixed cut-off. ROC-AUC

evaluates this threshold-independent separation between Dropout and Graduate
outcomes. Figure 7 shows an AUC of 0.9572, which indicates excellent discriminative
capability. The curve remains near the upper-left area, reflecting a strong true positive
rate with a low false positive rate across a wide range of thresholds. The selected
operating threshold of 0.464 represents a balanced point: lowering the threshold would
capture more at-risk students (higher recall) but increase false positives and staff
workload, while raising it would reduce false positives but risk missing more dropout
cases. The chosen threshold supports preventive intervention by maintaining strong

detection while keeping false alarms manageable.

ROC Curve - Stacking Classifier
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Figure 7. ROC-AUC analysis of Stacking Classifier

3.4.4. Matthews Correlation Coefficient (MCC)
o0 complements the above metrics, the MCC is reported as a balanced measure that
considers true positives, true negatives, false positives, and Ffalse negatives

simultaneously. The model achieves an MCC of 0.82, indicating strong agreement between
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predicted and actual labels. This reinforces that performance is not inflated by class

distribution effects and remains stable across both outcome groups, strengthening the
model's suitability For early warning deployment where misclassification costs are not

equal.

3.5. Discussion

The findings of this study confirm that a stacking-based ensemble architecture can
deliver strong predictive performance while still producing outputs that are meaningful
For institutional decision-making. The proposed Stacking Ensemble Learning model
achieves 90.91% accuracy, an ROC-AUC of 0.9572, and an MCC of 0.82, indicating both
high discrimination and stable agreement between predicted and actual outcomes.
Importantly, the error structure is operationally acceptable for early warning use: the
model keeps Ffalse alarms relatively low (20 Ffalse positives) while still detecting the
majority of at-risk students (238 true positives, with 46 false negatives). This balance
matters in practice because universities must identify enough at-risk students to justify
intervention programs without overwhelming academic support units with excessive

alerts.

From an interpretability standpoint, the feature importance results reinforce a consistent
message in recent dropout prediction research: early academic trajectory dominates risk
explanation. Variables such as first- and second-semester success rates, total approved
units, and average grades emerge as the most influential predictors, showing that
dropout risk is strongly shaped by whether students build early academic momentum.
This is aligned with [1], who emphasize that explainable Al is most valuable when it
highlights Factors that institutions can act on For personalized intervention. The
dominance of cumulative and early-semester performance indicators also supports the
observations reported by [2] and [3], where academic progress measures consistently
outperform demographic and macroeconomic attributes in classifying at-risk students.
In practical terms, this study strengthens the argument that early warning systems
should prioritize Ffirst-year trajectory monitoring—particularly credit completion
consistency and early course success—because these signals offer both predictive power
and clear intervention pathways (e.g, tutoring, course redesign, academic advising, or

structured study support).
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Methodologically, the results provide evidence that stacking improves reliability beyond

what single learners typically achieve by combining complementary strengths across
different algorithms. This supports the argument by [20] that two-layer ensemble
strategies can reduce generalization error by leveraging diverse inductive biases—here
represented by Random Forest's robustness, Gradient Boosting's iterative correction, and
XGBoost's strong optimization—then integrating them through a Logistic Regression
meta-learner. The high ROC-AUC value further aligns with [25], who report that stacking
frameworks often perform particularly well in complex classification tasks with
heterogeneous feature types. In this study, the practical benefit of stacking is visible in
the balanced precision-recall tradeoff: dropout predictions maintain high precision while
preserving meaningful recall, which is essential when the cost of missing at-risk students

(False negatives) can be higher than the cost of issuing limited False alerts.

The improvement in minority-class detection is also closely linked to the preprocessing
strategy. The use of SMOTE-Tomek Links addresses not only the class ratio problem but
also the quality of the decision boundary by removing borderline overlap. Similar to the
trends reported by [18], balancing the dataset supports stronger dropout recall without
driving false positives to an impractical level. This matters for deployment because
institutional early warning systems must reliably detect dropout risk patterns that may
otherwise be underrepresented during training, especially when the graduate class is
dominant. By reducing boundary noise, the model becomes more stable when exposed

to new cohorts, making predictions less sensitive to small shifts in student profiles.

This study contributes to the literature by demonstrating a practical bridge between
performance and usability: stacking ensemble learning provides strong predictive
capability, while feature engineering and importance analysis translate model behavior
into actionable risk signals that align with how universities design interventions. At the
same time, several considerations remain important for interpretation and future work.
The binary Formulation excludes the “Enrolled” group, which improves label clarity but
may reduce exposure to transitional trajectories; future studies could explore time-to-
event or multi-class approaches to capture uncertainty during ongoing study status. In
addition, expanding validation across institutional contexts—particularly within
Indonesian STEM programs—would further strengthen external validity and support

implementation as a scalable, policy-relevant early warning tool.
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4. CONCLUSION

This study shows that Stacking Ensemble Learning can predict STEM student dropout
accurately and provide usable insights for early intervention. The proposed model
achieves 90.91% accuracy and a3 ROC-AUC of 0.9572, indicating strong class separation.
Combining Random Forest, Gradient Boosting, and XGBoost with a Logistic Regression
meta-learner captures complementary patterns, while SMOTE-Tomek Links helps address
class imbalance and improves detection of dropout cases. Feature importance results
consistently point to early academic trajectory signals—especially first- and second-
semester success rates, total approved units, and average grades—as the most influential
predictors, making the model suitable as an interpretable early warning component in

academic information systems.

Key limitations include reliance on a single-source dataset, exclusion of
qualitative/behavioral Factors (e.g, motivation, engagement), and limited individual-level
transparency despite global feature importance; the binary setup also omits “Enrolled”
cases, which may contain transitional patterns. Future work should validate the approach
on multi-institutional/longitudinal data, integrate multimodal indicators (e.g, LMS activity),

and apply SHAP or counterfactual explanations to strengthen case-level interpretability.
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