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Abstract. Traditional hierarchical file systems make semantic 

organization awkward: a file that naturally belongs to multiple 

contexts must be forced into a single directory, leaving users to 

choose an arbitrary location or rely on duplication, linking, or search. 

This paper presents the design, prototype, and evaluation of a file 

system that preserves conventional hierarchical standards while 

adding an opt-in, tag-based semantic layer for multi-context 

categorization. We describe (i) a design in which tags are 

represented as directories with reserved, prefixed names and tag 

intersections are expressed through ordinary path nesting, and (ii) 

a proof-of-concept implementation that validates feasibility in 

practice. The implementation, PreTFS, is built as a FUSE (Filesystem 

in User Space) file system and uses SQLite to store file metadata 

and content. Results show that the design is realizable and remains 

compatible with conventional applications and workflows without 

external tools or specialized APIs. Benchmarking against a native 

kernel file system (btrfs) reveals expected overheads from user-

space indirection and metadata management, measuring 

approximately ~2–73 ms for metadata-oriented operations and ~1–

160 ms for file-content operations. These costs indicate the 

approach is practical for small-scale environments such as personal 

information management, where semantic flexibility and 

interoperability can outweigh peak performance. The novelty lies in 

a simple, hierarchically interoperable tagging design that enables 

semantic categorization through standard directory navigation. 

 

Keywords: Hierarchical Interoperability; Tag-Based Semantic File 

System; FUSE; Personal Information Management; Metadata 

Indexing 
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 1. INTRODUCTION 

 

Modern computing relies on file systems to store data persistently and to expose 

operating-system services for creating, reading, updating, and managing that data [1]. 

Recent research has substantially advanced storage performance [2], [3] and system 

stability [4], yet the user-facing interface for organizing and retrieving files remains 

largely unchanged. In practice, file systems are still “wed” to hierarchical directory trees 

whose core design dates back to the 1970s [5], [6]. Standards and conventions such as 

the Filesystem Hierarchy Standard (FHS) on Linux, as well as the analogous conventions 

on macOS and Windows, reinforce this structure as the default. This is not merely an 

engineering artifact: a recent survey shows that navigating hierarchical directories to 

retrieve information is the most frequent practice among personal information 

management activities [7], underscoring how deeply ingrained the hierarchy has 

become—even as the scale and complexity of stored information continues to grow. 

 

The central problem with hierarchical file systems is that they cannot naturally represent 

overlapping semantic membership. For a file f and two semantic directories A and B, 

hierarchical structures struggle to express 𝑓 ∈ 𝐴 ∩ 𝐵without forcing a trade-off. A file 

like biochemistry.md spans two semantic groupings—biology and chemistry—but the 

directory tree forces it to “live” in only one location. Common workarounds such as 

duplication, hard links, or reliance on expensive searches each impose tangible costs: 

duplication risks divergence, linking adds management complexity and can behave 

inconsistently across tools, and search shifts the burden to retrieval time and often 

degrades with depth and scale [1], [8], [9], [10]. These limitations are not purely theoretical; 

they conflict with how users often prefer to organize information. For instance, a survey 

of 74 postgraduate students found that most prefer an unconstrained approach to 

personal information management rather than one constrained by time, activity, or topic 

[11], whereas hierarchical organization implicitly forces such constraints by demanding a 

single “correct” place for each item. 

 

Semantic file systems are a natural candidate for addressing this mismatch because they 

index and organize files by meaning rather than by location alone [12]. In particular, tag- 

or category-based semantic file systems associate multiple identifiers with a file, allowing 
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the same file to appear in multiple semantic categories without duplication. However, the 

key barrier to adoption is not the concept of tagging itself but compatibility with the 

surrounding ecosystem. Most software—from command-line utilities like ls, tree, and pwd 

to graphical file explorers—assumes that directories are concrete hierarchical containers 

rather than query-defined views. As a result, any semantic alternative that disrupts the 

standard hierarchy or requires specialized interfaces risks being impractical for everyday 

use. We therefore define a fully hierarchically interoperable file system as one that (1) 

leaves the existing hierarchy untouched unless explicitly instructed, and (2) works with 

standard OS tools without extra utilities or APIs. 

 

Existing semantic file systems fall short of this interoperability goal in different ways. 

Early systems, such as the original Semantic File Systems work [13] and TagFS [14], 

represent tags through virtual directories, but the former can hide or distort expected 

behavior in path-based tools such as pwd, while the latter treats every directory as a 

virtual directory and thereby violates the requirement that the original hierarchy remain 

intact unless explicitly changed. More recent conceptual models, including Linked Tree 

Tags [15] and its AttFS extension [16], enrich tagging with boolean operators and 

attributes, but they rely on cumbersome operator syntax (e.g., ∧, ∨, ¬) that is not available 

on standard keyboard layouts and, importantly, remain largely unvalidated in practice due 

to a lack of implementations. Other systems such as 360° SFS [8] attempt to reduce 

manual effort by automating tag suggestions, yet they encode tags and intersections 

through filename postfixing, which increases cognitive overhead and undermines the 

familiar “directories as navigable places” interaction model. A different line of work 

embeds semantic retrieval inside dedicated applications or custom query interfaces [1], 

[17], but this breaks interoperability by moving core file navigation outside the standard 

OS toolchain. 

 

This paper addresses the resulting gap: prior work either improves semantic 

expressiveness at the expense of hierarchical interoperability, or preserves conventional 

navigation while failing to support intuitive, practical representations of semantic 

overlap. We propose a hierarchically interoperable, tag-based semantic file system in 

which tags are represented as directories with prefixed names, and intersections of tags 

are represented as nested prefixed directories, enabling semantic composition through 
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ordinary path navigation rather than special syntax. In doing so, we contribute both a 

concrete design (Section 2.1) and a working FUSE implementation (Section 2.2) that can 

be used with standard tools without requiring external utilities or APIs. Finally, we 

empirically evaluate the performance of the implementation relative to a native kernel 

file system (btrfs) (Section 3.2), quantifying the practical trade-offs of adding semantic 

views while maintaining hierarchical interoperability. 

 

 2. METHODS 

 

To outline the research procedure done for this paper, Figure 1 visualizes the research 

process, whilst Table 1 describes each process in detail, along with their respective result 

or findings. Together, these visualizations anchor our procedural narrative, linking each 

methodological step to the ensuing implementation choices and empirical evaluations. 

The figure highlights the iterative back-and-forth between design decisions and 

validation, while the table enumerates the concrete activities and observed outcomes for 

every numbered phase of the study. 

 

 

Table 1. Sequential detail on how this research is conducted 

Step Description Summary of results or findings 

1. Problem identification Analyze the current file 

system design architecture 

landscape. Generalize the 

problem. 

The findings of this step have 

been thoroughly discussed within 

Section 1 of this paper. In brief, 

hierarchical structures cannot 

represent semantic categories 

effectively. 

Figure 1. Step-by-step diagram representing the research methodology. Dashed lines 

represent backtracking/revision. 
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Step Description Summary of results or findings 

2. Literature study Ensure no existing 

solutions. Exemplify 

existing file systems. 

Consult software 

documentations. 

Also discussed within Section 1, no 

existing solution solves the 

problem effectively. 

3. Solution design Hypothesize a unique 

design that effectively 

solves the problem. Keep 

implementation feasibility 

in mind (hierarchic 

interoperability). 

Will be discussed in Section 2.1. 

Essentially, use prefixes to 

represent semantic directories 

and nested prefixed directories to 

represent semantic intersections. 

4. Implementation Implement the design. 

Revise the design if 

needed. Review more 

literature and 

documentation for clarity. 

The design is implemented using 

FUSE, Rust and SQLite, as a file 

system called PreTFS. 

Implementation details will be 

described in Section 2.2. 

5. Testing and 

benchmark 

Ensure the implementation 

works. Fix or improve the 

implementation 

accordingly. Analyze the 

final performance. 

The implementation works. 

Performance comparison with 

btrfs is described in Section 3.2. 

6. Result evaluation Draw conclusions from 

the overall research. 

Ensure that the problem is 

solved. Identify the 

limitations of the file 

system. State ideas on 

what can be done in 

future works. 

The design is feasible, as proven 

by the implementation. The 

proposed file system is fit for 

metadata-rich use cases, such as 

personal information 

management environments. 

Limitations of the design are 

described in Section 3.3.1. Ideas 

for further research are 

discussed afterwards. 
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 2.1. Design 

This paper proposes a tag-based file system design that fulfills the hierarchical 

interoperability qualifications described in Section 1. The proposed file system represents 

directories with prefixed names as semantic categories, and nested prefixed directories 

as category intersections. Figure 2 illustrates an example structure for the proposed 

design. Its nodes represent files and directories, whilst their edges represent their 

hierarchical relationship. 

 

In Figure 2, each node can be reached by one or many paths. For example, labels 𝑝! , 𝑝" , 

and 𝑝# represent different paths leading to the same biochemistry.md file. Table 2 shows 

what each 𝑝$ represents, along with the reason why each path may be used to access 

biochemistry.md. 

 

Table 2. Mapping between each 𝑝$ path for biochemistry.md and its path reasoning 

𝒑𝒊  Path representation Path reasoning 

𝑝!  /notes/#biology/#chemistry/biochemistry.md It is associated with the 

chemistry tag 

𝑝"  /notes/#biology/biochemistry.md It is associated with the 

biology tag 

𝑝#  /notes/#biology/#chemistry/biochemistry.md It is associated with the 

biology and chemistry tag 

 

Figure 2. Top-down tree-like file system structure, for the proposed file system design’s 

note taking example 
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On the other hand, there are two assignments directory: one under notes, and another 

under /notes/#biology. Neither of these directories is prefixed. However, if they were 

prefixed directories, taxonomy.md would also appear in /notes/assignments, since it would 

be associated with the assignments tag. While the file system design allows for user-

defined delimiters, the hash symbol serves as the default prefix. This selection is driven 

by two primary factors. First, the symbol offers semantic familiarity, leveraging the 

ubiquitous “hashtag” convention found in social media to denote categories. Second, it 

avoids namespace collisions with reserved system conventions, most notably the dot 

prefix used to omit hidden files. However, the hash prefix does have one notable 

drawback, which is that in most shells (e.g., zsh, bash, fish), the hash prefix is used to 

specify comments. This drawback can be circumvented by escaping or wrapping the hash 

prefix in a string. For a user to interact with the proposed file system, some operations 

must be facilitated by the file system. Aside from the standard file system operations, 

such as reading or writing bytes into a file, Table 3 indexes a non-comprehensive list of 

relevant operations that the user of the proposed file system may do. 

 

Table 3. Summary of relevant operations to be executed by the user 

Operation Summary 

Create new tag Create a directory with a unique prefixed name. 

Create file tag association Place a file inside a prefixed directory. 

Update file tag associations Move files from one prefixed directory to another. 

Index tagged files Read the contents of a prefixed directory.1 

Delete tags Remove every associated file.2 

 
1 Prefixed directories are entirely structured hierarchically. To tie back to the previous example in 

Figure 2, the /notes/#biology/#chemistry/#attachments prefixed directory does not appear in 

/notes/#chemistry. This wouldn’t be the case if the #attachments directory were an unprefixed 

directory. 

 
2 Removing a prefixed directory requires all its prefixed directory children to be deleted 

recursively. For example, if the user wants to delete the /notes/#biology directory in Figure 2, 

/notes/#biology/#chemistry must be deleted first, unlike /notes/#biology/biochemistry.md, which 

doesn’t have to be deleted first. 
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 2.2. Implementation 

Traditionally, within UNIX operating systems, file systems are implemented within the 

kernel space. To allow multiple file systems to be mounted simultaneously, UNIX 

operating systems like Linux implement a Virtual File System (often abbreviated as VFS). 

In brief, the role of a VFS is to provide a common interface between file-related function 

calls and an underlying file system. Each function call is mapped to a corresponding file 

system function, depending on which file system is operated on. Some of the more 

common kernel space file systems supported by the VFS are: 

1) ext4 (fourth extended filesystem), the most recent version of the most used file 

system in Linux 

2) NTFS (New Technology File System), used in Windows operating systems, is now 

interoperable with Linux 

3) exFAT (Extended File Allocation Table), mostly used in portable storage devices 

such as SD cards and USB flash drives 

 

While the VFS layer provides mounting flexibility, it traditionally places a deployment 

burden on the user, often necessitating custom kernel modules or manual patching to 

support new file systems. Filesystem in Userspace (FUSE) circumvents this complexity by 

relying on a single, ubiquitous kernel module. Instead of requiring a bespoke kernel driver, 

a FUSE-based file system communicates with the kernel via a user-space interface. This 

architecture significantly lowers the barrier for implementing complex features, such as 

network integration via ssh (e.g., sshfs) or interaction with relational databases (e.g., 

sqlitefs), which would be prohibitively difficult to develop directly within the kernel. 

 

As proof of concept, a FUSE implementation of the proposed design (presented in 

Section 2.1), called PreTFS3 (Prefix-Tag File System), will be presented within this section. 

Rust was selected as the programming language for this implementation due to its 

compile-time safety, modern design, and low-level FUSE support. To facilitate this 

implementation, an SQLite database is used to store file metadata and content. To narrow 

down cross-platform compatibility issues, this implementation will be developed only for 

Linux operating systems. 

 
3 The PreTFS source code is available at https://github.com/arsmoriendy/PreTFS 

 

https://github.com/arsmoriendy/PreTFS
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SQLite is chosen as the database because of its small footprint (~900-1500 kB), lack of 

dependencies, reliability, and fast performance [18]. Besides, as a relational database, 

SQLite complements well with how the proposed file system would be structured. For 

example, a prefixed directory might have multiple relationships (one to many) with many 

tags. This would be harder to implement within non-relational databases, such as NoSQL 

databases. Figure 3 describes the tables used within this implementation. To interact with 

the SQLite database in Rust, we will use a general-purpose SQL API called sqlx. Write-

ahead logging (WAL) mode will be enabled for every connection in order to support read 

and write concurrency to the database. 

 

On the other hand, a FUSE library is needed to interact with the FUSE kernel module. 

Whilst libfuse is the standard FUSE API in C, fuser will be used as a replacement for 

libfuse’s low-level API to communicate with the FUSE kernel module using Rust. Creating 

a file system in fuser requires an implementation of the fuser::Filesystem trait, which 

roughly maps to the fuse_lowlevel_ops struct in libfuse. From 45 fuse_lowlevel_ops 

methods, 39 of them exist also in fuser::Filesystem. However, not all of them need to be 

implemented; only 13 of them are needed for the proposed file system implementation. 

Within the scope of the proposed file system, only 7 of those are relevant, while the rest 

are just standard file system operations, like reading from or writing to a file. Concisely, 

Figure 3. Entity Relation Diagram (ERD) for the SQLite tables 
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we can classify similar relevant methods into 5 groups, corresponding to each operation 

in Table 3. Table 4 lists the mapping between user operations and file system methods. 

 

Table 4. User operations and file system methods mapping 

User operation Method(s) Implementation detail 

Creating tags mkdir 

The mkdir method allows the user to create 

directories. This is relevant because creating tags is 

done by creating prefixed directories. However, 

creating nested redundant prefixed directories is not 

allowed. For example, /notes/#biology/#biology is not 

allowed, since the nested #biology prefixed directory is 

redundant. 

Create file tag 

associations 
mknod, 

rename 

The mknod method is used to create new files, whilst 

the rename method is used to move or rename files, 

by changing or “renaming” the associated file path. 

The mknod method is used to create file tag 

associations by creating a new file inside a prefixed 

directory, whilst the rename method is used to create 

file tag associations by moving a file to a prefixed 

directory. The rename method is not exclusive to files; 

directories can also be renamed or moved using the 

same method. Note that renaming a prefixed directory 

to an unprefixed one will throw an error. 

Update file tag 

associations 
rename 

The rename method can also be used to update file 

tag associations by moving or renaming the path of a 

file from having one prefixed parent to another. It can 

also be used to delete file tag associations by moving 

a file from a prefixed directory to an unprefixed one. 

List tagged files 
readdir, 

lookup 

The readdir method is probably the most important 

method within this implementation. It is used to list 

the inodes and names of children in a directory. On 

unprefixed directories, the readdir method works 
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User operation Method(s) Implementation detail 

relatively simply by querying the dir_contents database 

table. However, the readdir method doesn’t work as 

trivially on prefixed directories. It needs to list nested 

prefixed directories by also querying the dir_contents 

database table. On top of that, it must list all 

unprefixed directories and files associated with the 

prefixed parent directory. Figure 4 is an example of a 

query that does just that. Since the readdir method 

only exposes the inodes and names of a directory’s 

children, the lookup method is subsequently used to 

get correlated attributes for each child. The lookup 

method also uses Figure 4 on a prefixed directory to 

fetch associated children attributes based on their 

names. 

Delete tags rmdir, unlink 

The rmdir method is used to remove directories, 

whilst unlink is used to remove files. The unlink 

method is called as such because it decrements the 

nlink attribute of a file (i.e., the number of hard links 

to a file). Once a file has zero hard links, it will be 

removed. To completely remove a tag, the user must 

remove all associated files and directories. One 

caveat is that calling rmdir on a prefixed directory will 

not remove its children4. 

 

To facilitate 5 of the 7 relevant methods described in Table 4 (i.e., lookup, readdir, rmdir, 

unlink, and rename), a common and crucial database query pattern arises. These queries 

are used to fetch attributes of a file associated with two or more tags. Figure 4 is an 

example of such a query. The prominence of these queries is present in methods that 

 
4 The corresponding command for calling the rmdir method in Linux is the appropriately called 

rmdir; this is not to be confused with rm -r, which removes a directory and its contents recursively. 
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require reading the contents of a prefixed directory. Because of the length and many 

uses of these queries, a helper function is created within the implementation to reduce 

code duplication. This helper function was called chain_tagged_inos, and an algorithmic 

pseudocode notation of this function is shown in Algorithm 1. For example, Figure 4 can 

be easily created by calling Algorithm 1 with input 𝑞 as “SELECT * FROM file_attrs WHERE 

ino IN”, and 𝑇 as {1,2}. 

 

 

 
To conclude the implementation section, Figure 5 provides a simple running example 

for a write operation that spans the user request through PreTFS, SQLite, and the rest 

of the kernel space components. Below are explanations for each step of the process. 

1) The user triggers a write() system call for a file located within the PreTFS file 

system. This request is sent to the VFS. 

2) The VFS hands the request off to the corresponding file system where the file 

lives. In this case, since the responsible file system is PreTFS — which is a FUSE 

file system — the FUSE kernel module will handle it. 

3) The FUSE kernel module forwards the request to PreTFS via system calls. 

4) PreTFS updates the relevant tables within the SQLite database. 

 

Figure 4. An example SQLite query for listing the attributes of files associated with 

tags with tid 1 and 2 
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5) Since SQLite databases take the form of a file, a request to update the 

database file is sent to the VFS via system calls. 

6) The VFS routes the request towards the file system holding the database file 

(i.e., btrfs). 

7) Finally, btrfs writes the updated database file to the disk partition. 

 

 3. RESULTS AND DISCUSSION 

 

 3.1. Use Case Demonstration 

In this section, a synthetic scenario of Figure 2 will be implemented within PreTFS. 

Figure 6 shows the hierarchical structure of this experiment. The bracketed numbers (e.g., 

[1]) show the corresponding inode of each file. Conceptually, the demonstration confirms 

that PreTFS can represent the proposed design correctly. It shows how a single inode 

(biochemistry.md) can surface in every prefixed path that matches its semantic tags, such 

as /notes/#biology and /notes/#biology/#chemistry, without duplicating the underlying 

entry. The consistent inode numbering across these directories illustrates that the tag 

intersections are derived simply by nesting prefixed directories, not by copying or 

renaming files. Simultaneously, the example preserves the expectation that unprefixed 

directories like /notes/assignments behave identically to a traditional hierarchy, ensuring 

the overall structure remains interoperable with conventional tools. 

 

Figure 5. Diagram of how a write operation is handled. Dashed lines represent system 

calls. 
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 3.2. Performance Analysis 

Whilst PreTFS implementation in this paper does not primarily focus on performance, 

this section will discuss the benchmarks done on PreTFS. Figure 7 shows metadata-

related benchmarks, whilst Figure 8 shows IO-related benchmarks. In addition, Table 5 

displays a comparison of median values for the benchmark. Within the benchmarks, the 

SQLite database file for PreTFS resides within the same btrfs file system that it is 

compared to. For each benchmark iteration (i.e., the x-axis), 100 runs are measured. Every 

set of diagrams in a row is measured using the same command; depending on the 

iteration, as shown in Table 6. Caching is disabled to ensure consistency between 

benchmark runs. This is done in two parts: (1) kernel caches are dropped prior to every 

run by running “sync; echo 3 > /proc/sys/vm/drop_caches”, and (2) SQLite page and 

statement caching is disabled by setting the cache_size “PRAGMA” and the 

statement_cache_capacity connection option to 0. 

 

Figure 6. Result of running the command tree --inodes notes/ 



Vol. 8, No. 1, February 2026 

 
 

Lie Steven Staria Nugraha, Fahri Firdausillah | 492 

 
 

 

Figure 7. File metadata related benchmarks of btrfs and PreTFS 

Figure 8. File content related benchmarks of btrfs and PreTFS 
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Table 5. Comparison of benchmark results between PreTFS, btrfs, and their overhead. 

Benchmark 
PreTFS btrfs Overhead 

min max avg min max avg min max avg 

Lookup 10ms 29ms 18ms 7ms 9ms 8ms 2ms 20ms 10ms 

Directory creation 26ms 81ms 51ms 7ms 8ms 8ms 18ms 73ms 44ms 

Read 9ms 12ms 10ms 7ms 8ms 7ms 1ms 4ms 3ms 

Write 30ms 169ms 92ms 8ms 9ms 9ms 21ms 160ms 83ms 

 

Table 6. Commands ran for each benchmark 

Benchmark Command 

Lookup ls mountpoint/{nested-directories}/file 

Directory creation mkdir -p mountpoint/{nested-directories} 

Read cat mountpoint/file 

Write cat /dev/random | head --bytes {file-size} > mountpoint/file 

 

3.3. Performance Summary 

The benchmarks indicate that PreTFS introduces measurable overhead across lookup, 

creation, read, and write operations, mainly due to FUSE syscall latency [19], [20] and 

additional SQLite queries for tag intersections and paged file contents. However, these 

costs remain bounded and predictable, and they trade off against stronger semantic 

flexibility and interoperability goals. Figure 7, Figure 8, and Table 5 reveal the following 

performance characteristics for each benchmark category: 

1) Lookup performance: Diagrams (A) and (B) in Figure 7, along with the first row 

of Table 5 show PreTFS has linear lookup times (~10-29ms) depending on 

nesting level, compared to btrfs (~8ms). This results in an average overhead 

time of ~10ms. 

2) Creation performance: Diagrams (C) and (D) in Figure 7, along with the second 

row of Table 5 demonstrate linear scaling for PreTFS (~26-81ms) versus 

constant time for btrfs (~8ms). Resulting in an average overhead of ~44ms. 

3) Read performance: Diagrams (E) and (F) in Figure 8, along with the third row 

of Table 5 display non-linear yet variable results for PreTFS (~10-13ms). On the 
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other hand, btrfs maintains a more consistent performance (~7ms). Resulting 

in the smallest average overhead of ~3ms. 

4) Write performance: Finally, diagrams (G) and (H) in Figure 8, along with the 

fourth row in Table 5 highlight the biggest performance contrast between the 

two file systems. The benchmarks show that PreTFS linearly scales for each 

size increase (~30-169ms), whilst btrfs is indifferent between write sizes (~9ms). 

The overhead for this benchmark is also the highest at ~83ms. 

 

Acceptable use cases include research or documentation collections that need multiple 

semantic views, environments where metadata richness matters more than raw 

throughput, and workflows that already tolerate FUSE latency because they mainly serve 

human users rather than bulk automated workloads. Unacceptable use cases are latency-

sensitive bulk transfers, database servers that demand kernel-level throughput, storage 

for larger file sizes like modern video games, or where the added latency overhead would 

conflict with strict service-level objectives. 

 

3.4. Discussion 

The proposed file system design in this paper delivers a cohesive semantic experience, 

reliably surfacing prefixed files through standard utilities and giving users immediate 

organizational clarity without leaving the familiar hierarchy. Furthermore, the PreTFS 

implementation proves the feasibility of such a design. And finally, benchmark 

evaluations show that while there may be room for performance improvements, the 

proof-of-concept implementation suffices in use cases where metadata structure is 

pertinent. 

 

One example implication of this paper is that the proposed file system may help in the 

digitalisation of personal information management or PIM systems [21]. A recent survey 

[7] shows gaps between actual and ideal PIM-related behaviors. Whilst the study shows 

that most of the gaps can be attributed to the user’s ineffective usage of already existing 

PIM features, tagging stands out as the most prevalent underused feature. This may be 

caused by the lack of native tagging support in existing file systems, which is what this 

paper tries to solve. Still on the subject of PIMs, the proposed file system in this paper 

may aid file categorization described in the personal information organization process 
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(PIOP) [22] by allowing scenarios where the user evaluates that a file should reside in 

multiple directories. The PIOP paper [22] also states that one of the ways users categorize 

their files is by identifying the file type through the file extension. However, another 

research indicates that many users lack a functional understanding of file extensions 

[23], suggesting that semantic tagging provides a more accessible retrieval mechanism. 

To wrap up the discussion on PIMs, a recent review on the future of PIMs [5] correctly 

states that file system design has not evolved in adoption for decades, and that support 

for interlinking is lacking. The file system proposed within this paper provides interlinking 

in the form of semantic categorization, and may be a candidate for the future of PIMs. 

 

While the design proposed in Section 2.1 establishes a robust framework for hierarchical 

interoperability, certain architectural choices necessitate trade-offs. Although the system 

successfully manages the majority of standard operational scenarios, specific edge cases 

regarding data persistence and naming conventions warrant further discussion: 

 

1) Superset duplicate handling 

A significant challenge arises when distinct files share the same name but possess 

overlapping tags. For instance, if note.md exists in /notes/#biology/ and a different 

note.md exists in /notes/#biology/#chemistry/, both theoretically belong in the 

/notes/#biology view. However, since standard file systems prohibit duplicate filenames 

within a single directory, an ambiguity arises. The current implementation resolves this 

by displaying only the first file instance retrieved from the database. While automated 

renaming strategies (e.g., prepending numerical identifiers like 1-note.md) were 

considered, they were rejected to avoid conflicts with existing user-defined naming 

conventions. 

 

2) Persistence of orphaned views 

A dissonance exists between standard directory removal and the system’s semantic logic. 

When a user deletes a tag-directory (e.g., /notes/#biology), its subdirectories (e.g., 

assignments) are removed from the immediate hierarchy. However, their records persist 

within the database, effectively becoming “orphaned” from the view. While implementing 

a “pruning” mechanism to scrub these orphans is possible, the design prioritizes data 

safety. Consequently, deletion operations on tag-prefixed directories are strictly scoped 
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to the view model, ensuring that modifying the navigational structure does not 

inadvertently destroy the underlying file content. 

 

3) Optimal prefix 

The choice of the prefix delimiter presents a trade-off between visual distinctiveness 

and shell compatibility. While the default hash symbol effectively distinguishes semantic 

tags from standard directory names, it conflicts with shell comment syntax. Alternative 

delimiters (such as! or &) pose similar challenges regarding history expansion or 

background process execution. To address this, PreTFS supports configurable multi-

character prefixes (i.e., string prefixes). This allows the namespace delimiter to be 

extended beyond a single character, significantly reducing the probability of collision 

with both shell interpreters and existing file naming conventions. 

 

4) Intersection exclusivity 

The hierarchical mapping of tags inherently restricts the system to a single set operation. 

In the proposed design, prefixed directory nesting denotes the intersection of tags (i.e., 

the ∩ operator, filtering for files containing all specified tags). While the architecture 

could effectively model tag unions (i.e., the ∪ operator, aggregating files containing any 

of the tags), the linear nature of directory traversal prevents the simultaneous 

application of both intersection and union operators within the same path structure. 

 

Finally, for future work, performance could be optimized through several strategies. One 

such way is by handing off file storage to the native file system, which might grant native 

read/write performance. On the other hand, metadata operations within a file system 

aren’t usually performance-intensive. However, metadata operations account for ~80% 

of all file system operations [24], and improving their performance might yield significant 

results. There are many ways to improve metadata operations, such as optimizing dentry 

caches [25], among others. Further research may also focus on migrating the 

implementation entirely to a native kernel file system. There also exist recent FUSE-like 

innovations such as Direct-FUSE [26], which bypasses system calls between the kernel 

and user space. Another FUSE improvement called DeFUSE [27], might also improve 

performance by isolating file content related request within the kernel space, whilst still 

allowing metadata requests through the user space. 
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4. CONCLUSION 

 

This paper presents the design, implementation, and evaluation of a tag-based semantic 

file system that uses a novel approach of using prefixed directories to represent tags. 

Its prefix-driven structure keeps conventional hierarchies intact while letting users 

express semantic intersections directly within the existing namespace. The PreTFS 

implementation proves that the proposed design can be realized. Performance evaluation 

reveals expected implementation overhead, with slower performance compared to a 

kernel space file system (i.e., btrfs), that may scale linearly in certain scenarios. These 

trade-offs are inherent to the FUSE architecture, in addition to an SQLite-backed 

approach, representing an acceptable cost for gaining better ease of development and 

installation compared to kernel space file systems. Comparison with existing tag-based 

file systems demonstrates that the proposed design provides a simpler, more 

straightforward approach to semantic categorization, whilst allowing conventional 

programs to interact with it seamlessly. Future work may include: (1) offloading file 

content to the underlying file system, (2) exploring kernel space implementation, and (3) 

investigating modern file system frameworks and architectures for improved 

performance. 
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