
Vol. 8, No. 1, February 2026

478

Journal of Information Systems and Informatics | ISSN: 2656-5935 | e-ISSN: 2656-4882 | pp. 478-500
Published by Asosiasi Doktor Sistem Informasi Indonesia

Design and Implementation of a Hierarchically Interoperable Tag-

Based File System using FUSE (PreTFS)

Lie Steven Staria Nugraha1, Fahri Firdausillah2

1,2Department of Computer Science, Universitas Dian Nuswantoro, Semarang, Indonesia

Received:
November 19, 2025
Revised:
January 14, 2026
Accepted:
January 29, 2026
Published:
February 19, 2026

Corresponding Author:
Author Name*:
Lie Steven Staria Nugraha
Email*:
nugrahasteven@gmail.com

DOI:

10.63158/journalisi.v8i1.1416

© 2026 Journal of

Information Systems and

Informatics. This open

access article is distributed

under a (CC-BY License)

Abstract. Traditional hierarchical file systems make semantic

organization awkward: a file that naturally belongs to multiple

contexts must be forced into a single directory, leaving users to

choose an arbitrary location or rely on duplication, linking, or search.

This paper presents the design, prototype, and evaluation of a file

system that preserves conventional hierarchical standards while

adding an opt-in, tag-based semantic layer for multi-context

categorization. We describe (i) a design in which tags are

represented as directories with reserved, prefixed names and tag

intersections are expressed through ordinary path nesting, and (ii)

a proof-of-concept implementation that validates feasibility in

practice. The implementation, PreTFS, is built as a FUSE (Filesystem

in User Space) file system and uses SQLite to store file metadata

and content. Results show that the design is realizable and remains

compatible with conventional applications and workflows without

external tools or specialized APIs. Benchmarking against a native

kernel file system (btrfs) reveals expected overheads from user-

space indirection and metadata management, measuring

approximately ~2–73 ms for metadata-oriented operations and ~1–

160 ms for file-content operations. These costs indicate the

approach is practical for small-scale environments such as personal

information management, where semantic flexibility and

interoperability can outweigh peak performance. The novelty lies in

a simple, hierarchically interoperable tagging design that enables

semantic categorization through standard directory navigation.

Keywords: Hierarchical Interoperability; Tag-Based Semantic File

System; FUSE; Personal Information Management; Metadata

Indexing

https://doi.org/10.63158/journalisi.v8i1.1416

Vol. 8, No. 1, February 2026

479 | Design and Implementation of a Hierarchically Interoperable Tag-Based File …..

 1. INTRODUCTION

Modern computing relies on file systems to store data persistently and to expose

operating-system services for creating, reading, updating, and managing that data [1].

Recent research has substantially advanced storage performance [2], [3] and system

stability [4], yet the user-facing interface for organizing and retrieving files remains

largely unchanged. In practice, file systems are still “wed” to hierarchical directory trees

whose core design dates back to the 1970s [5], [6]. Standards and conventions such as

the Filesystem Hierarchy Standard (FHS) on Linux, as well as the analogous conventions

on macOS and Windows, reinforce this structure as the default. This is not merely an

engineering artifact: a recent survey shows that navigating hierarchical directories to

retrieve information is the most frequent practice among personal information

management activities [7], underscoring how deeply ingrained the hierarchy has

become—even as the scale and complexity of stored information continues to grow.

The central problem with hierarchical file systems is that they cannot naturally represent

overlapping semantic membership. For a file f and two semantic directories A and B,

hierarchical structures struggle to express 𝑓 ∈ 𝐴 ∩ 𝐵without forcing a trade-off. A file

like biochemistry.md spans two semantic groupings—biology and chemistry—but the

directory tree forces it to “live” in only one location. Common workarounds such as

duplication, hard links, or reliance on expensive searches each impose tangible costs:

duplication risks divergence, linking adds management complexity and can behave

inconsistently across tools, and search shifts the burden to retrieval time and often

degrades with depth and scale [1], [8], [9], [10]. These limitations are not purely theoretical;

they conflict with how users often prefer to organize information. For instance, a survey

of 74 postgraduate students found that most prefer an unconstrained approach to

personal information management rather than one constrained by time, activity, or topic

[11], whereas hierarchical organization implicitly forces such constraints by demanding a

single “correct” place for each item.

Semantic file systems are a natural candidate for addressing this mismatch because they

index and organize files by meaning rather than by location alone [12]. In particular, tag-

or category-based semantic file systems associate multiple identifiers with a file, allowing

Vol. 8, No. 1, February 2026

Lie Steven Staria Nugraha, Fahri Firdausillah | 480

the same file to appear in multiple semantic categories without duplication. However, the

key barrier to adoption is not the concept of tagging itself but compatibility with the

surrounding ecosystem. Most software—from command-line utilities like ls, tree, and pwd

to graphical file explorers—assumes that directories are concrete hierarchical containers

rather than query-defined views. As a result, any semantic alternative that disrupts the

standard hierarchy or requires specialized interfaces risks being impractical for everyday

use. We therefore define a fully hierarchically interoperable file system as one that (1)

leaves the existing hierarchy untouched unless explicitly instructed, and (2) works with

standard OS tools without extra utilities or APIs.

Existing semantic file systems fall short of this interoperability goal in different ways.

Early systems, such as the original Semantic File Systems work [13] and TagFS [14],

represent tags through virtual directories, but the former can hide or distort expected

behavior in path-based tools such as pwd, while the latter treats every directory as a

virtual directory and thereby violates the requirement that the original hierarchy remain

intact unless explicitly changed. More recent conceptual models, including Linked Tree

Tags [15] and its AttFS extension [16], enrich tagging with boolean operators and

attributes, but they rely on cumbersome operator syntax (e.g., ∧, ∨, ¬) that is not available

on standard keyboard layouts and, importantly, remain largely unvalidated in practice due

to a lack of implementations. Other systems such as 360° SFS [8] attempt to reduce

manual effort by automating tag suggestions, yet they encode tags and intersections

through filename postfixing, which increases cognitive overhead and undermines the

familiar “directories as navigable places” interaction model. A different line of work

embeds semantic retrieval inside dedicated applications or custom query interfaces [1],

[17], but this breaks interoperability by moving core file navigation outside the standard

OS toolchain.

This paper addresses the resulting gap: prior work either improves semantic

expressiveness at the expense of hierarchical interoperability, or preserves conventional

navigation while failing to support intuitive, practical representations of semantic

overlap. We propose a hierarchically interoperable, tag-based semantic file system in

which tags are represented as directories with prefixed names, and intersections of tags

are represented as nested prefixed directories, enabling semantic composition through

Vol. 8, No. 1, February 2026

481 | Design and Implementation of a Hierarchically Interoperable Tag-Based File …..

ordinary path navigation rather than special syntax. In doing so, we contribute both a

concrete design (Section 2.1) and a working FUSE implementation (Section 2.2) that can

be used with standard tools without requiring external utilities or APIs. Finally, we

empirically evaluate the performance of the implementation relative to a native kernel

file system (btrfs) (Section 3.2), quantifying the practical trade-offs of adding semantic

views while maintaining hierarchical interoperability.

 2. METHODS

To outline the research procedure done for this paper, Figure 1 visualizes the research

process, whilst Table 1 describes each process in detail, along with their respective result

or findings. Together, these visualizations anchor our procedural narrative, linking each

methodological step to the ensuing implementation choices and empirical evaluations.

The figure highlights the iterative back-and-forth between design decisions and

validation, while the table enumerates the concrete activities and observed outcomes for

every numbered phase of the study.

Table 1. Sequential detail on how this research is conducted

Step Description Summary of results or findings

1. Problem identification Analyze the current file

system design architecture

landscape. Generalize the

problem.

The findings of this step have

been thoroughly discussed within

Section 1 of this paper. In brief,

hierarchical structures cannot

represent semantic categories

effectively.

Figure 1. Step-by-step diagram representing the research methodology. Dashed lines

represent backtracking/revision.

Vol. 8, No. 1, February 2026

Lie Steven Staria Nugraha, Fahri Firdausillah | 482

Step Description Summary of results or findings

2. Literature study Ensure no existing

solutions. Exemplify

existing file systems.

Consult software

documentations.

Also discussed within Section 1, no

existing solution solves the

problem effectively.

3. Solution design Hypothesize a unique

design that effectively

solves the problem. Keep

implementation feasibility

in mind (hierarchic

interoperability).

Will be discussed in Section 2.1.

Essentially, use prefixes to

represent semantic directories

and nested prefixed directories to

represent semantic intersections.

4. Implementation Implement the design.

Revise the design if

needed. Review more

literature and

documentation for clarity.

The design is implemented using

FUSE, Rust and SQLite, as a file

system called PreTFS.

Implementation details will be

described in Section 2.2.

5. Testing and

benchmark

Ensure the implementation

works. Fix or improve the

implementation

accordingly. Analyze the

final performance.

The implementation works.

Performance comparison with

btrfs is described in Section 3.2.

6. Result evaluation Draw conclusions from

the overall research.

Ensure that the problem is

solved. Identify the

limitations of the file

system. State ideas on

what can be done in

future works.

The design is feasible, as proven

by the implementation. The

proposed file system is fit for

metadata-rich use cases, such as

personal information

management environments.

Limitations of the design are

described in Section 3.3.1. Ideas

for further research are

discussed afterwards.

Vol. 8, No. 1, February 2026

483 | Design and Implementation of a Hierarchically Interoperable Tag-Based File …..

 2.1. Design

This paper proposes a tag-based file system design that fulfills the hierarchical

interoperability qualifications described in Section 1. The proposed file system represents

directories with prefixed names as semantic categories, and nested prefixed directories

as category intersections. Figure 2 illustrates an example structure for the proposed

design. Its nodes represent files and directories, whilst their edges represent their

hierarchical relationship.

In Figure 2, each node can be reached by one or many paths. For example, labels 𝑝! , 𝑝" ,

and 𝑝# represent different paths leading to the same biochemistry.md file. Table 2 shows

what each 𝑝$ represents, along with the reason why each path may be used to access

biochemistry.md.

Table 2. Mapping between each 𝑝$ path for biochemistry.md and its path reasoning

𝒑𝒊 Path representation Path reasoning

𝑝! /notes/#biology/#chemistry/biochemistry.md It is associated with the

chemistry tag

𝑝" /notes/#biology/biochemistry.md It is associated with the

biology tag

𝑝# /notes/#biology/#chemistry/biochemistry.md It is associated with the

biology and chemistry tag

Figure 2. Top-down tree-like file system structure, for the proposed file system design’s

note taking example

Vol. 8, No. 1, February 2026

Lie Steven Staria Nugraha, Fahri Firdausillah | 484

On the other hand, there are two assignments directory: one under notes, and another

under /notes/#biology. Neither of these directories is prefixed. However, if they were

prefixed directories, taxonomy.md would also appear in /notes/assignments, since it would

be associated with the assignments tag. While the file system design allows for user-

defined delimiters, the hash symbol serves as the default prefix. This selection is driven

by two primary factors. First, the symbol offers semantic familiarity, leveraging the

ubiquitous “hashtag” convention found in social media to denote categories. Second, it

avoids namespace collisions with reserved system conventions, most notably the dot

prefix used to omit hidden files. However, the hash prefix does have one notable

drawback, which is that in most shells (e.g., zsh, bash, fish), the hash prefix is used to

specify comments. This drawback can be circumvented by escaping or wrapping the hash

prefix in a string. For a user to interact with the proposed file system, some operations

must be facilitated by the file system. Aside from the standard file system operations,

such as reading or writing bytes into a file, Table 3 indexes a non-comprehensive list of

relevant operations that the user of the proposed file system may do.

Table 3. Summary of relevant operations to be executed by the user

Operation Summary

Create new tag Create a directory with a unique prefixed name.

Create file tag association Place a file inside a prefixed directory.

Update file tag associations Move files from one prefixed directory to another.

Index tagged files Read the contents of a prefixed directory.1

Delete tags Remove every associated file.2

1 Prefixed directories are entirely structured hierarchically. To tie back to the previous example in

Figure 2, the /notes/#biology/#chemistry/#attachments prefixed directory does not appear in

/notes/#chemistry. This wouldn’t be the case if the #attachments directory were an unprefixed

directory.

2 Removing a prefixed directory requires all its prefixed directory children to be deleted

recursively. For example, if the user wants to delete the /notes/#biology directory in Figure 2,

/notes/#biology/#chemistry must be deleted first, unlike /notes/#biology/biochemistry.md, which

doesn’t have to be deleted first.

Vol. 8, No. 1, February 2026

485 | Design and Implementation of a Hierarchically Interoperable Tag-Based File …..

 2.2. Implementation

Traditionally, within UNIX operating systems, file systems are implemented within the

kernel space. To allow multiple file systems to be mounted simultaneously, UNIX

operating systems like Linux implement a Virtual File System (often abbreviated as VFS).

In brief, the role of a VFS is to provide a common interface between file-related function

calls and an underlying file system. Each function call is mapped to a corresponding file

system function, depending on which file system is operated on. Some of the more

common kernel space file systems supported by the VFS are:

1) ext4 (fourth extended filesystem), the most recent version of the most used file

system in Linux

2) NTFS (New Technology File System), used in Windows operating systems, is now

interoperable with Linux

3) exFAT (Extended File Allocation Table), mostly used in portable storage devices

such as SD cards and USB flash drives

While the VFS layer provides mounting flexibility, it traditionally places a deployment

burden on the user, often necessitating custom kernel modules or manual patching to

support new file systems. Filesystem in Userspace (FUSE) circumvents this complexity by

relying on a single, ubiquitous kernel module. Instead of requiring a bespoke kernel driver,

a FUSE-based file system communicates with the kernel via a user-space interface. This

architecture significantly lowers the barrier for implementing complex features, such as

network integration via ssh (e.g., sshfs) or interaction with relational databases (e.g.,

sqlitefs), which would be prohibitively difficult to develop directly within the kernel.

As proof of concept, a FUSE implementation of the proposed design (presented in

Section 2.1), called PreTFS3 (Prefix-Tag File System), will be presented within this section.

Rust was selected as the programming language for this implementation due to its

compile-time safety, modern design, and low-level FUSE support. To facilitate this

implementation, an SQLite database is used to store file metadata and content. To narrow

down cross-platform compatibility issues, this implementation will be developed only for

Linux operating systems.

3 The PreTFS source code is available at https://github.com/arsmoriendy/PreTFS

https://github.com/arsmoriendy/PreTFS

Vol. 8, No. 1, February 2026

Lie Steven Staria Nugraha, Fahri Firdausillah | 486

SQLite is chosen as the database because of its small footprint (~900-1500 kB), lack of

dependencies, reliability, and fast performance [18]. Besides, as a relational database,

SQLite complements well with how the proposed file system would be structured. For

example, a prefixed directory might have multiple relationships (one to many) with many

tags. This would be harder to implement within non-relational databases, such as NoSQL

databases. Figure 3 describes the tables used within this implementation. To interact with

the SQLite database in Rust, we will use a general-purpose SQL API called sqlx. Write-

ahead logging (WAL) mode will be enabled for every connection in order to support read

and write concurrency to the database.

On the other hand, a FUSE library is needed to interact with the FUSE kernel module.

Whilst libfuse is the standard FUSE API in C, fuser will be used as a replacement for

libfuse’s low-level API to communicate with the FUSE kernel module using Rust. Creating

a file system in fuser requires an implementation of the fuser::Filesystem trait, which

roughly maps to the fuse_lowlevel_ops struct in libfuse. From 45 fuse_lowlevel_ops

methods, 39 of them exist also in fuser::Filesystem. However, not all of them need to be

implemented; only 13 of them are needed for the proposed file system implementation.

Within the scope of the proposed file system, only 7 of those are relevant, while the rest

are just standard file system operations, like reading from or writing to a file. Concisely,

Figure 3. Entity Relation Diagram (ERD) for the SQLite tables

Vol. 8, No. 1, February 2026

487 | Design and Implementation of a Hierarchically Interoperable Tag-Based File …..

we can classify similar relevant methods into 5 groups, corresponding to each operation

in Table 3. Table 4 lists the mapping between user operations and file system methods.

Table 4. User operations and file system methods mapping

User operation Method(s) Implementation detail

Creating tags mkdir

The mkdir method allows the user to create

directories. This is relevant because creating tags is

done by creating prefixed directories. However,

creating nested redundant prefixed directories is not

allowed. For example, /notes/#biology/#biology is not

allowed, since the nested #biology prefixed directory is

redundant.

Create file tag

associations
mknod,

rename

The mknod method is used to create new files, whilst

the rename method is used to move or rename files,

by changing or “renaming” the associated file path.

The mknod method is used to create file tag

associations by creating a new file inside a prefixed

directory, whilst the rename method is used to create

file tag associations by moving a file to a prefixed

directory. The rename method is not exclusive to files;

directories can also be renamed or moved using the

same method. Note that renaming a prefixed directory

to an unprefixed one will throw an error.

Update file tag

associations
rename

The rename method can also be used to update file

tag associations by moving or renaming the path of a

file from having one prefixed parent to another. It can

also be used to delete file tag associations by moving

a file from a prefixed directory to an unprefixed one.

List tagged files
readdir,

lookup

The readdir method is probably the most important

method within this implementation. It is used to list

the inodes and names of children in a directory. On

unprefixed directories, the readdir method works

Vol. 8, No. 1, February 2026

Lie Steven Staria Nugraha, Fahri Firdausillah | 488

User operation Method(s) Implementation detail

relatively simply by querying the dir_contents database

table. However, the readdir method doesn’t work as

trivially on prefixed directories. It needs to list nested

prefixed directories by also querying the dir_contents

database table. On top of that, it must list all

unprefixed directories and files associated with the

prefixed parent directory. Figure 4 is an example of a

query that does just that. Since the readdir method

only exposes the inodes and names of a directory’s

children, the lookup method is subsequently used to

get correlated attributes for each child. The lookup

method also uses Figure 4 on a prefixed directory to

fetch associated children attributes based on their

names.

Delete tags rmdir, unlink

The rmdir method is used to remove directories,

whilst unlink is used to remove files. The unlink

method is called as such because it decrements the

nlink attribute of a file (i.e., the number of hard links

to a file). Once a file has zero hard links, it will be

removed. To completely remove a tag, the user must

remove all associated files and directories. One

caveat is that calling rmdir on a prefixed directory will

not remove its children4.

To facilitate 5 of the 7 relevant methods described in Table 4 (i.e., lookup, readdir, rmdir,

unlink, and rename), a common and crucial database query pattern arises. These queries

are used to fetch attributes of a file associated with two or more tags. Figure 4 is an

example of such a query. The prominence of these queries is present in methods that

4 The corresponding command for calling the rmdir method in Linux is the appropriately called

rmdir; this is not to be confused with rm -r, which removes a directory and its contents recursively.

Vol. 8, No. 1, February 2026

489 | Design and Implementation of a Hierarchically Interoperable Tag-Based File …..

require reading the contents of a prefixed directory. Because of the length and many

uses of these queries, a helper function is created within the implementation to reduce

code duplication. This helper function was called chain_tagged_inos, and an algorithmic

pseudocode notation of this function is shown in Algorithm 1. For example, Figure 4 can

be easily created by calling Algorithm 1 with input 𝑞 as “SELECT * FROM file_attrs WHERE

ino IN”, and 𝑇 as {1,2}.

To conclude the implementation section, Figure 5 provides a simple running example

for a write operation that spans the user request through PreTFS, SQLite, and the rest

of the kernel space components. Below are explanations for each step of the process.

1) The user triggers a write() system call for a file located within the PreTFS file

system. This request is sent to the VFS.

2) The VFS hands the request off to the corresponding file system where the file

lives. In this case, since the responsible file system is PreTFS — which is a FUSE

file system — the FUSE kernel module will handle it.

3) The FUSE kernel module forwards the request to PreTFS via system calls.

4) PreTFS updates the relevant tables within the SQLite database.

Figure 4. An example SQLite query for listing the attributes of files associated with

tags with tid 1 and 2

Vol. 8, No. 1, February 2026

Lie Steven Staria Nugraha, Fahri Firdausillah | 490

5) Since SQLite databases take the form of a file, a request to update the

database file is sent to the VFS via system calls.

6) The VFS routes the request towards the file system holding the database file

(i.e., btrfs).

7) Finally, btrfs writes the updated database file to the disk partition.

 3. RESULTS AND DISCUSSION

 3.1. Use Case Demonstration

In this section, a synthetic scenario of Figure 2 will be implemented within PreTFS.

Figure 6 shows the hierarchical structure of this experiment. The bracketed numbers (e.g.,

[1]) show the corresponding inode of each file. Conceptually, the demonstration confirms

that PreTFS can represent the proposed design correctly. It shows how a single inode

(biochemistry.md) can surface in every prefixed path that matches its semantic tags, such

as /notes/#biology and /notes/#biology/#chemistry, without duplicating the underlying

entry. The consistent inode numbering across these directories illustrates that the tag

intersections are derived simply by nesting prefixed directories, not by copying or

renaming files. Simultaneously, the example preserves the expectation that unprefixed

directories like /notes/assignments behave identically to a traditional hierarchy, ensuring

the overall structure remains interoperable with conventional tools.

Figure 5. Diagram of how a write operation is handled. Dashed lines represent system

calls.

Vol. 8, No. 1, February 2026

491 | Design and Implementation of a Hierarchically Interoperable Tag-Based File …..

 3.2. Performance Analysis

Whilst PreTFS implementation in this paper does not primarily focus on performance,

this section will discuss the benchmarks done on PreTFS. Figure 7 shows metadata-

related benchmarks, whilst Figure 8 shows IO-related benchmarks. In addition, Table 5

displays a comparison of median values for the benchmark. Within the benchmarks, the

SQLite database file for PreTFS resides within the same btrfs file system that it is

compared to. For each benchmark iteration (i.e., the x-axis), 100 runs are measured. Every

set of diagrams in a row is measured using the same command; depending on the

iteration, as shown in Table 6. Caching is disabled to ensure consistency between

benchmark runs. This is done in two parts: (1) kernel caches are dropped prior to every

run by running “sync; echo 3 > /proc/sys/vm/drop_caches”, and (2) SQLite page and

statement caching is disabled by setting the cache_size “PRAGMA” and the

statement_cache_capacity connection option to 0.

Figure 6. Result of running the command tree --inodes notes/

Vol. 8, No. 1, February 2026

Lie Steven Staria Nugraha, Fahri Firdausillah | 492

Figure 7. File metadata related benchmarks of btrfs and PreTFS

Figure 8. File content related benchmarks of btrfs and PreTFS

Vol. 8, No. 1, February 2026

493 | Design and Implementation of a Hierarchically Interoperable Tag-Based File …..

Table 5. Comparison of benchmark results between PreTFS, btrfs, and their overhead.

Benchmark
PreTFS btrfs Overhead

min max avg min max avg min max avg

Lookup 10ms 29ms 18ms 7ms 9ms 8ms 2ms 20ms 10ms

Directory creation 26ms 81ms 51ms 7ms 8ms 8ms 18ms 73ms 44ms

Read 9ms 12ms 10ms 7ms 8ms 7ms 1ms 4ms 3ms

Write 30ms 169ms 92ms 8ms 9ms 9ms 21ms 160ms 83ms

Table 6. Commands ran for each benchmark

Benchmark Command

Lookup ls mountpoint/{nested-directories}/file

Directory creation mkdir -p mountpoint/{nested-directories}

Read cat mountpoint/file

Write cat /dev/random | head --bytes {file-size} > mountpoint/file

3.3. Performance Summary

The benchmarks indicate that PreTFS introduces measurable overhead across lookup,

creation, read, and write operations, mainly due to FUSE syscall latency [19], [20] and

additional SQLite queries for tag intersections and paged file contents. However, these

costs remain bounded and predictable, and they trade off against stronger semantic

flexibility and interoperability goals. Figure 7, Figure 8, and Table 5 reveal the following

performance characteristics for each benchmark category:

1) Lookup performance: Diagrams (A) and (B) in Figure 7, along with the first row

of Table 5 show PreTFS has linear lookup times (~10-29ms) depending on

nesting level, compared to btrfs (~8ms). This results in an average overhead

time of ~10ms.

2) Creation performance: Diagrams (C) and (D) in Figure 7, along with the second

row of Table 5 demonstrate linear scaling for PreTFS (~26-81ms) versus

constant time for btrfs (~8ms). Resulting in an average overhead of ~44ms.

3) Read performance: Diagrams (E) and (F) in Figure 8, along with the third row

of Table 5 display non-linear yet variable results for PreTFS (~10-13ms). On the

Vol. 8, No. 1, February 2026

Lie Steven Staria Nugraha, Fahri Firdausillah | 494

other hand, btrfs maintains a more consistent performance (~7ms). Resulting

in the smallest average overhead of ~3ms.

4) Write performance: Finally, diagrams (G) and (H) in Figure 8, along with the

fourth row in Table 5 highlight the biggest performance contrast between the

two file systems. The benchmarks show that PreTFS linearly scales for each

size increase (~30-169ms), whilst btrfs is indifferent between write sizes (~9ms).

The overhead for this benchmark is also the highest at ~83ms.

Acceptable use cases include research or documentation collections that need multiple

semantic views, environments where metadata richness matters more than raw

throughput, and workflows that already tolerate FUSE latency because they mainly serve

human users rather than bulk automated workloads. Unacceptable use cases are latency-

sensitive bulk transfers, database servers that demand kernel-level throughput, storage

for larger file sizes like modern video games, or where the added latency overhead would

conflict with strict service-level objectives.

3.4. Discussion

The proposed file system design in this paper delivers a cohesive semantic experience,

reliably surfacing prefixed files through standard utilities and giving users immediate

organizational clarity without leaving the familiar hierarchy. Furthermore, the PreTFS

implementation proves the feasibility of such a design. And finally, benchmark

evaluations show that while there may be room for performance improvements, the

proof-of-concept implementation suffices in use cases where metadata structure is

pertinent.

One example implication of this paper is that the proposed file system may help in the

digitalisation of personal information management or PIM systems [21]. A recent survey

[7] shows gaps between actual and ideal PIM-related behaviors. Whilst the study shows

that most of the gaps can be attributed to the user’s ineffective usage of already existing

PIM features, tagging stands out as the most prevalent underused feature. This may be

caused by the lack of native tagging support in existing file systems, which is what this

paper tries to solve. Still on the subject of PIMs, the proposed file system in this paper

may aid file categorization described in the personal information organization process

Vol. 8, No. 1, February 2026

495 | Design and Implementation of a Hierarchically Interoperable Tag-Based File …..

(PIOP) [22] by allowing scenarios where the user evaluates that a file should reside in

multiple directories. The PIOP paper [22] also states that one of the ways users categorize

their files is by identifying the file type through the file extension. However, another

research indicates that many users lack a functional understanding of file extensions

[23], suggesting that semantic tagging provides a more accessible retrieval mechanism.

To wrap up the discussion on PIMs, a recent review on the future of PIMs [5] correctly

states that file system design has not evolved in adoption for decades, and that support

for interlinking is lacking. The file system proposed within this paper provides interlinking

in the form of semantic categorization, and may be a candidate for the future of PIMs.

While the design proposed in Section 2.1 establishes a robust framework for hierarchical

interoperability, certain architectural choices necessitate trade-offs. Although the system

successfully manages the majority of standard operational scenarios, specific edge cases

regarding data persistence and naming conventions warrant further discussion:

1) Superset duplicate handling

A significant challenge arises when distinct files share the same name but possess

overlapping tags. For instance, if note.md exists in /notes/#biology/ and a different

note.md exists in /notes/#biology/#chemistry/, both theoretically belong in the

/notes/#biology view. However, since standard file systems prohibit duplicate filenames

within a single directory, an ambiguity arises. The current implementation resolves this

by displaying only the first file instance retrieved from the database. While automated

renaming strategies (e.g., prepending numerical identifiers like 1-note.md) were

considered, they were rejected to avoid conflicts with existing user-defined naming

conventions.

2) Persistence of orphaned views

A dissonance exists between standard directory removal and the system’s semantic logic.

When a user deletes a tag-directory (e.g., /notes/#biology), its subdirectories (e.g.,

assignments) are removed from the immediate hierarchy. However, their records persist

within the database, effectively becoming “orphaned” from the view. While implementing

a “pruning” mechanism to scrub these orphans is possible, the design prioritizes data

safety. Consequently, deletion operations on tag-prefixed directories are strictly scoped

Vol. 8, No. 1, February 2026

Lie Steven Staria Nugraha, Fahri Firdausillah | 496

to the view model, ensuring that modifying the navigational structure does not

inadvertently destroy the underlying file content.

3) Optimal prefix

The choice of the prefix delimiter presents a trade-off between visual distinctiveness

and shell compatibility. While the default hash symbol effectively distinguishes semantic

tags from standard directory names, it conflicts with shell comment syntax. Alternative

delimiters (such as! or &) pose similar challenges regarding history expansion or

background process execution. To address this, PreTFS supports configurable multi-

character prefixes (i.e., string prefixes). This allows the namespace delimiter to be

extended beyond a single character, significantly reducing the probability of collision

with both shell interpreters and existing file naming conventions.

4) Intersection exclusivity

The hierarchical mapping of tags inherently restricts the system to a single set operation.

In the proposed design, prefixed directory nesting denotes the intersection of tags (i.e.,

the ∩ operator, filtering for files containing all specified tags). While the architecture

could effectively model tag unions (i.e., the ∪ operator, aggregating files containing any

of the tags), the linear nature of directory traversal prevents the simultaneous

application of both intersection and union operators within the same path structure.

Finally, for future work, performance could be optimized through several strategies. One

such way is by handing off file storage to the native file system, which might grant native

read/write performance. On the other hand, metadata operations within a file system

aren’t usually performance-intensive. However, metadata operations account for ~80%

of all file system operations [24], and improving their performance might yield significant

results. There are many ways to improve metadata operations, such as optimizing dentry

caches [25], among others. Further research may also focus on migrating the

implementation entirely to a native kernel file system. There also exist recent FUSE-like

innovations such as Direct-FUSE [26], which bypasses system calls between the kernel

and user space. Another FUSE improvement called DeFUSE [27], might also improve

performance by isolating file content related request within the kernel space, whilst still

allowing metadata requests through the user space.

Vol. 8, No. 1, February 2026

497 | Design and Implementation of a Hierarchically Interoperable Tag-Based File …..

4. CONCLUSION

This paper presents the design, implementation, and evaluation of a tag-based semantic

file system that uses a novel approach of using prefixed directories to represent tags.

Its prefix-driven structure keeps conventional hierarchies intact while letting users

express semantic intersections directly within the existing namespace. The PreTFS

implementation proves that the proposed design can be realized. Performance evaluation

reveals expected implementation overhead, with slower performance compared to a

kernel space file system (i.e., btrfs), that may scale linearly in certain scenarios. These

trade-offs are inherent to the FUSE architecture, in addition to an SQLite-backed

approach, representing an acceptable cost for gaining better ease of development and

installation compared to kernel space file systems. Comparison with existing tag-based

file systems demonstrates that the proposed design provides a simpler, more

straightforward approach to semantic categorization, whilst allowing conventional

programs to interact with it seamlessly. Future work may include: (1) offloading file

content to the underlying file system, (2) exploring kernel space implementation, and (3)

investigating modern file system frameworks and architectures for improved

performance.

REFERENCES

[1] H. tom Wörden, F. Spreckelsen, S. Luther, U. Parlitz, and A. Schlemmer, “Mapping

hierarchical file structures to semantic data models for efficient data integration

into research data management systems,” Data, vol. 9, no. 2, Art. no. 24, 2024, doi:

10.3390/data9020024.

[2] Y. Wang, W.-Q. Jia, D.-J. Jiang, and J. Xiong, “A survey of non-volatile main memory

file systems,” J. Comput. Sci. Technol., vol. 38, no. 2, pp. 348–372, 2023, doi:

10.1007/s11390-023-1054-3.

[3] Y. Yang, Q. Cao, J. Yao, Y. Dong, and W. Kong, “SPMFS: A scalable persistent memory

file system on Optane persistent memory,” in Proc. 50th Int. Conf. Parallel Process.

(ICPP ’21), Lemont, IL, USA, Aug. 2021, doi: 10.1145/3472456.3472503.

Vol. 8, No. 1, February 2026

Lie Steven Staria Nugraha, Fahri Firdausillah | 498

[4] H. Leblanc, N. Taylor, J. Bornholt, and V. Chidambaram, “SquirrelFS: Using the Rust

compiler to check file-system crash consistency,” ACM Trans. Storage, vol. 21, no. 4,

Nov. 2025, doi: 10.1145/3769109.

[5] A. Dix, “The future of PIM: Pragmatics and potential,” Hum.-Comput. Interact., vol. 41,

no. 2, pp. 126–153, 2026, doi: 10.1080/07370024.2024.2356155.

[6] T. Habermann, “Metadata life cycles, use cases and hierarchies,” Geosciences, vol. 8,

no. 5, Art. no. 179, 2018, doi: 10.3390/geosciences8050179.

[7] L. Alon and R. Nachmias, “Gaps between actual and ideal personal information

management behavior,” Comput. Hum. Behav., vol. 107, Art. no. 106292, 2020, doi:

10.1016/j.chb.2020.106292.

[8] S. R. Mashwani and S. Khusro, “360° semantic file system: Augmented directory

navigation for nonhierarchical retrieval of files,” IEEE Access, vol. 7, pp. 9406–9418,

2019, doi: 10.1109/ACCESS.2018.2890165.

[9] O. Bergman, T. Israeli, and Y. Benn, “Why do some people search for their files much

more than others? A preliminary study,” Aslib J. Inf. Manag., vol. 73, no. 3, pp. 406–

418, 2021, doi: 10.1108/AJIM-08-2020-0250.

[10] O. Bergman, T. Israeli, and S. Whittaker, “Factors hindering shared files retrieval,”

Aslib J. Inf. Manag., vol. 72, no. 1, pp. 130–147, 2020, doi: 10.1108/AJIM-05-2019-0120.

[11] P. Englefield and R. Beale, “How helpful is it to organize personal information by

activity?,” Behav. Inf. Technol., early access, 2025, doi:

10.1080/0144929X.2025.2560551.

[12] S. R. Mashwani and S. Khusro, “The design and development of a semantic file

system ontology,” Eng. Technol. Appl. Sci. Res., vol. 8, no. 2, pp. 2827–2833, Apr. 2018,

doi: 10.48084/etasr.1898.

[13] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O’Toole, “Semantic file systems,” in

Proc. 13th ACM Symp. Oper. Syst. Principles (SOSP ’91), Pacific Grove, CA, USA, Oct.

1991, pp. 16–25, doi: 10.1145/121132.121138.

[14] S. Bloehdorn, O. Görlitz, S. Schenk, M. Völkel, and F. Karlsruhe, “TagFS—Tag semantics

for hierarchical file systems,” in Proc. 6th Int. Conf. Knowl. Manag. (I-KNOW ’06), Graz,

Austria, 2006, pp. 6–8.

[15] N. Albadri and S. Dekeyser, “A novel file system supporting rich file classification,”

Comput. Electr. Eng., vol. 103, Art. no. 108081, 2022, doi:

10.1016/j.compeleceng.2022.108081.

Vol. 8, No. 1, February 2026

499 | Design and Implementation of a Hierarchically Interoperable Tag-Based File …..

[16] N. Albadri, “Attributes or tags for files? AttFS: Bringing attributes to the hierarchical

file system,” Mars J. Tek. Mesin Ind. Elektro Ilmu Komput., vol. 3, no. 1, pp. 120–138,

Jan. 2025, doi: 10.61132/mars.v3i1.607.

[17] T. Mkrtchyan et al., “dCache: The storage system of choice for data-intensive

applications,” Comput. Softw. Big Sci., vol. 9, no. 1, Art. no. 20, 2025, doi: 10.1007/s41781-

025-00152-5.

[18] K. P. Gaffney, M. Prammer, L. Brasfield, D. R. Hipp, D. Kennedy, and J. M. Patel, “SQLite:

Past, present, and future,” Proc. VLDB Endow., vol. 15, no. 12, pp. 3535–3547, Aug. 2022,

doi: 10.14778/3554821.3554842.

[19] B. K. R. Vangoor et al., “Performance and resource utilization of FUSE user-space

file systems,” ACM Trans. Storage, vol. 15, no. 2, May 2019, doi: 10.1145/3310148.

[20] S. Miller et al., “High velocity kernel file systems with Bento,” in Proc. 19th USENIX

Conf. File Storage Technol. (FAST ’21), Feb. 2021, pp. 65–79.

[21] Y. Miyata et al., “Personal information management practices among the general

public: Analysis of questionnaire survey results in U.S. and Japan,” Aslib J. Inf. Manag.,

early access, 2025, doi: 10.1108/AJIM-10-2024-0839.

[22] K. E. Oh, “Personal information organization in everyday life: Modeling the process,”

J. Doc., vol. 75, no. 3, pp. 667–691, 2019, doi: 10.1108/JD-05-2018-0080.

[23] P. Stephens and M. McGowan, “File management: Student knowledge of file type

extensions,” Issues Inf. Syst., vol. 21, no. 3, pp. 236–244, 2020, doi:

10.48009/3_iis_2020_236-244.

[24] H. Dai, Y. Wang, K. B. Kent, L. Zeng, and C. Xu, “The state of the art of metadata

management in large-scale distributed file systems—Scalability, performance and

availability,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 12, pp. 3850–3869, 2022, doi:

10.1109/TPDS.2022.3170574.

[25] N. Y. Song, H. Kim, H. Han, and H. Y. Yeom, “Optimizing metadata management in

large-scale file systems,” Cluster Comput., vol. 21, no. 4, pp. 1865–1879, Dec. 2018, doi:

10.1007/s10586-018-2814-7.

[26] Y. Zhu et al., “Direct-FUSE: Removing the middleman for high-performance FUSE file

system support,” in Proc. 8th Int. Workshop Runtime Oper. Syst. Supercomput. (ROSS

’18), Tempe, AZ, USA, 2018, doi: 10.1145/3217189.3217195.

Vol. 8, No. 1, February 2026

Lie Steven Staria Nugraha, Fahri Firdausillah | 500

[27] W. Yan, J. Yao, and Q. Cao, “Defuse: Decoupling metadata and data processing in

FUSE framework for performance improvement,” IEEE Access, vol. 7, pp. 138473–

138484, 2019, doi: 10.1109/ACCESS.2019.2942954.

