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Abstract. Traditional hierarchical File systems make semantic
organization awkward: a File that naturally belongs to multiple
contexts must be forced into a single directory, leaving users to
choose an arbitrary location or rely on duplication, linking, or search.
This paper presents the design, prototype, and evaluation of a File
system that preserves conventional hierarchical standards while
adding an opt-in, tag-based semantic layer For multi-context
categorization. We describe () a design in which tags are
represented as directories with reserved, prefixed names and tag
intersections are expressed through ordinary path nesting, and (ii)
a proof-of-concept implementation that validates Ffeasibility in
practice. The implementation, PreTFS, is built as a FUSE (Filesystem
in User Space) file system and uses SQLite to store file metadata
and content. Results show that the design is realizable and remains
compatible with conventional applications and workflows without
external tools or specialized APIs. Benchmarking against a native
kernel File system (btrfs) reveals expected overheads from user-
space indirection and metadata management, measuring
approximately ~2-73 ms for metadata-oriented operations and ~1-
160 ms for file-content operations. These costs indicate the
approach is practical for small-scale environments such as personal
information management, where semantic Fflexibility and
interoperability can outweigh peak performance. The novelty lies in
a simple, hierarchically interoperable tagging design that enables

semantic categorization through standard directory navigation.
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1 INTRODUCTION

Modern computing relies on file systems to store data persistently and to expose
operating-system services for creating, reading, updating, and managing that data [1l.
Recent research has substantially advanced storage performance (2], [3] and system
stability [4], yet the user-facing interface for organizing and retrieving files remains
largely unchanged. In practice, File systems are still “wed” to hierarchical directory trees
whose core design dates back to the 1970s [5], [6]. Standards and conventions such as
the Filesystem Hierarchy Standard (FHS) on Linux, as well as the analogous conventions
on macOS and Windows, reinforce this structure as the default. This is not merely an
engineering artifact: a recent survey shows that navigating hierarchical directories to
retrieve information is the most frequent practice among personal information
management activities [7], underscoring how deeply ingrained the hierarchy has

become—even as the scale and complexity of stored information continues to grow.

The central problem with hierarchical file systems is that they cannot naturally represent
overlapping semantic membership. For a file £ and two semantic directories A and 5,
hierarchical structures struggle to express f € A N Bwithout Forcing a trade-off. A file
like biochemistry.md spans two semantic groupings—biology and chemistry—but the
directory tree forces it to “live" in only one location. Common workarounds such as
duplication, hard links, or reliance on expensive searches each impose tangible costs:
duplication risks divergence, linking adds management complexity and can behave
inconsistently across tools, and search shifts the burden to retrieval time and often
degrades with depth and scale [1], [8], [9], [10]. These limitations are not purely theoretical;
they conflict with how users often prefer to organize information. For instance, a survey
of 74 postgraduate students found that most prefer an unconstrained approach to
personal information management rather than one constrained by time, activity, or topic
[11], whereas hierarchical organization implicitly forces such constraints by demanding a

single "correct” place for each item.
Semantic File systems are a natural candidate for addressing this mismatch because they

index and organize files by meaning rather than by location alone [12]. In particular, tag-

or category-based semantic file systems associate multiple identifiers with a File, allowing
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the same file to appear in multiple semantic categories without duplication. However, the

key barrier to adoption is not the concept of tagging itself but compatibility with the
surrounding ecosystem. Most software—from command-line utilities like Is, tree, and pwd
to graphical file explorers—assumes that directories are concrete hierarchical containers
rather than query-defined views. As a result, any semantic alternative that disrupts the
standard hierarchy or requires specialized interfaces risks being impractical for everyday
use. We therefore define a fully hierarchically interoperable file system as one that (1)
leaves the existing hierarchy untouched unless explicitly instructed, and (2) works with

standard OS tools without extra utilities or APIs.

Existing semantic file systems fall short of this interoperability goal in different ways.
Early systems, such as the original Semantic File Systems work [13] and TagFS [14],
represent tags through virtual directories, but the fFormer can hide or distort expected
behavior in path-based tools such as pwd, while the latter treats every directory as a
virtual directory and thereby violates the requirement that the original hierarchy remain
intact unless explicitly changed. More recent conceptual models, including Linked Tree
Tags [15] and its ALtFS extension [16], enrich tagging with boolean operators and
attributes, but they rely on cumbersome operator syntax (e.g, A, V, =) that is not available
on standard keyboard layouts and, importantly, remain largely unvalidated in practice due
to a lack of implementations. Other systems such as 360° SFS [8] attempt to reduce
manual effort by automating tag suggestions, yet they encode tags and intersections
through filename postfixing, which increases cognitive overhead and undermines the
Familiar “directories as navigable places” interaction model. A different line of work
embeds semantic retrieval inside dedicated applications or custom query interfaces [1],
[17], but this breaks interoperability by moving core file navigation outside the standard

OS toolchain.

This paper addresses the resulting gap: prior work either improves semantic
expressiveness at the expense of hierarchical interoperability, or preserves conventional
navigation while failing to support intuitive, practical representations of semantic
overlap. We propose a hierarchically interoperable, tag-based semantic file system in
which tags are represented as directories with prefixed names, and intersections of tags

are represented as nested prefixed directories, enabling semantic composition through
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ordinary path navigation rather than special syntax. In doing so, we contribute both a

concrete design (Section 2.1) and a working FUSE implementation (Section 2.2) that can
be used with standard tools without requiring external utilities or APIs. Finally, we
empirically evaluate the performance of the implementation relative to a native kernel
File system (btrfs) (Section 3.2), quantifying the practical trade-offs of adding semantic

views while maintaining hierarchical interoperability.

2. METHODS

To outline the research procedure done for this paper, Figure 1 visualizes the research
process, whilst Table 1 describes each process in detail, along with their respective result
or findings. Together, these visualizations anchor our procedural narrative, linking each
methodological step to the ensuing implementation choices and empirical evaluations.
The Ffigure highlights the iterative back-and-forth between design decisions and
validation, while the table enumerates the concrete activities and observed outcomes for

every numbered phase of the study.

1. Problem identification 3. Solution design 5. Testing and benchmark
J / I‘ ) ,’// l
, .-
] _-
\ -
A 4”/
2. Literature study <------- 4. Implementation 6. Result evaluation

Figure 1. Step-by-step diagram representing the research methodology. Dashed lines

represent backtracking/revision.

Table 1. Sequential detail on how this research is conducted

Step Description Summary of results or findings

1. Problem identification Analyze the current file The findings of this step have
system design architecture been thoroughly discussed within

landscape. Generalize the  Section 1 of this paper. In brief,

problem. hierarchical structures cannot

represent semantic categories

effectively.
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Summary of results or findings

Step Description

2. Literature study Ensure no existing Also discussed within Section 1, no

solutions. Exemplify existing solution solves the
existing file systems. problem effectively.
Consult software

documentations.

3. Solution design Hypothesize a unique Will be discussed in Section 2.1.
design that effectively Essentially, use prefixes to

solves the problem. Keep represent semantic directories

implementation feasibility and nested prefixed directories to

in mind (hierarchic represent semantic intersections.

interoperability).
The design is implemented using

FUSE, Rust and SQLite, as a file

system called PreTFS.

4. Implementation Implement the design.

Revise the design if

needed. Review more

literature and Implementation details will be

documentation for clarity. described in Section 2.2.

5. Testing and Ensure the implementation The implementation works.
benchmark works. Fix or improve the Performance comparison with

implementation btrfs is described in Section 3.2.

accordingly. Analyze the
fFinal performance.

6. Result evaluation Draw conclusions from The design is fFeasible, as proven
the overall research. by the implementation. The

Ensure that the problem is  proposed file system is fit for

solved. Identify the metadata-rich use cases, such as

limitations of the File personal information

system. State ideas on management environments.

what can be done in Limitations of the design are

future works. described in Section 3.3.1. Ideas

for Further research are

discussed afterwards.
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2.1. Design
This paper proposes a tag-based Ffile system design that Ffulfills the hierarchical
interoperability qualifications described in Section 1. The proposed file system represents
directories with prefixed names as semantic categories, and nested prefixed directories
as category intersections. Figure 2 illustrates an example structure for the proposed
design. Its nodes represent files and directories, whilst their edges represent their

hierarchical relationship.

p17p2
p3

notes

#biology #chemistry — assignments
K
assignments #chemistry Ps3 dissertation.tex
D2 \
pl \

taxonomy.md biochemistry.md #attachments
Figure 2. Top-down tree-like File system structure, for the proposed file system design's

note taking example

In Figure 2, each node can be reached by one or many paths. For example, labels p4, p,,
and p; represent different paths leading to the same biochemistry.md file. Table 2 shows
what each p; represents, along with the reason why each path may be used to access

biochemistry.md.

Table 2. Mapping between each p; path for biochemistry.md and its path reasoning

Di Path representation Path reasoning

P1 /notes/#biology/#chemistry/biochemistry.md It is associated with the

chemistry tag

D2 /notes/#biology/biochemistry.md It is associated with the
biology tag
P3 /notes/#biology/#chemistry/biochemistry.md It is associated with the

biology and chemistry tag

483 | Design and Implementation of a Hierarchically Interoperable Tag-Based File ...



Published By
‘ll >) Asosiasi Doktor
L //_-‘ Sistem Informasi Indonesia

On the other hand, there are two assignments directory: one under notes, and another

under /notes/#biology. Neither of these directories is prefixed. However, if they were
prefixed directories, taxonomy.md would also appear in /notes/assignments, since it would
be associated with the assignments tag. While the file system design allows for user-
defined delimiters, the hash symbol serves as the default prefix. This selection is driven
by two primary Ffactors. First, the symbol offers semantic familiarity, leveraging the
ubiquitous "hashtag” convention found in social media to denote categories. Second, it
avoids namespace collisions with reserved system conventions, most notably the dot
prefix used to omit hidden files. However, the hash prefix does have one notable
drawback, which is that in most shells (e.g, zsh, bash, fish), the hash prefix is used to
specify comments. This drawback can be circumvented by escaping or wrapping the hash
prefix in a string. For a user to interact with the proposed file system, some operations
must be Facilitated by the file system. Aside from the standard file system operations,
such as reading or writing bytes into a file, Table 3 indexes a non-comprehensive list of

relevant operations that the user of the proposed file system may do.

Table 3. Summary of relevant operations to be executed by the user

Operation Summary
Create new tag Create a directory with a unique prefixed name.
Create file tag association Place a file inside a prefixed directory.
Update Ffile tag associations Move files from one prefixed directory to another.
Index tagged files Read the contents of a prefixed directory.l
Delete tags Remove every associated file.2

' Prefixed directories are entirely structured hierarchically. To tie back to the previous example in
Figure 2, the /notes/#biology/#chemistry/#attachments prefixed directory does not appear in
/notes/#tchemistry. This wouldn't be the case if the #attachments directory were an unprefixed

directory.

2 Removing a prefixed directory requires all its prefixed directory children to be deleted
recursively. For example, if the user wants to delete the /notes/#biology directory in Figure 2,
/notes/#tbiology/#chemistry must be deleted First, unlike /notes/#biology/biochemistry.md, which

doesn't have to be deleted Ffirst.

Lie Steven Staria Nugraha, Fahri Firdausillah | 484



Published By
‘ll > Asosiasi Doktor
L //_-‘ Sistem Informasi Indonesia

2.2. Implementation

Traditionally, within UNIX operating systems, file systems are implemented within the
kernel space. To allow multiple File systems to be mounted simultaneously, UNIX
operating systems like Linux implement a Virtual File System (often abbreviated as VFS).
In brief, the role of a VFS is to provide a common interface between file-related function
calls and an underlying file system. Each function call is mapped to a corresponding file
system Function, depending on which file system is operated on. Some of the more
common kernel space file systems supported by the VFS are:
1)  ext4 (Fourth extended Ffilesystem), the most recent version of the most used Ffile
system in Linux
2) NTFS (New Technology File System), used in Windows operating systems, is now
interoperable with Linux
3) exFAT (Extended File Allocation Table), mostly used in portable storage devices

such as SD cards and USB flash drives

While the VFS layer provides mounting flexibility, it traditionally places a deployment
burden on the user, often necessitating custom kernel modules or manual patching to
support new File systems. Filesystem in Userspace (FUSE) circumvents this complexity by
relying on a single, ubiquitous kernel module. Instead of requiring a bespoke kernel driver,
a FUSE-based File system communicates with the kernel via a user-space interface. This
architecture significantly lowers the barrier for implementing complex features, such as
network integration via ssh (e.g, sshfs) or interaction with relational databases (e.g,

sqlitefs), which would be prohibitively difficult to develop directly within the kernel.

As proof of concept, a FUSE implementation of the proposed design (presented in
Section 2.1), called PreTFS3 (Prefix-Tag File System), will be presented within this section.
Rust was selected as the programming language for this implementation due to its
compile-time safety, modern design, and low-level FUSE support. To Ffacilitate this
implementation, an SQLite database is used to store file metadata and content. To narrow
down cross-platform compatibility issues, this implementation will be developed only for

Linux operating systems.

3 The PreTFS source code is available at https://github.com/arsmoriendy/PreTFS
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SQLite is chosen as the database because of its small Footprint (~900-1500 kB), lack of

dependencies, reliability, and fast performance [18]. Besides, as a relational database,
SQLite complements well with how the proposed file system would be structured. For
example, a prefixed directory might have multiple relationships (one to many) with many
tags. This would be harder to implement within non-relational databases, such as NoSQL
databases. Figure 3 describes the tables used within this implementation. To interact with
the SQLite database in Rust, we will use a general-purpose SQL API called sqlx. Write-
ahead logging (WAL) mode will be enabled for every connection in order to support read

and write concurrency to the database.

file_names ino file_atts ino associated_tags
INTEGER | ino | PKFK | >O——— INTEGER | ino | Pk F——————0O< | INTEGER | ino | FK
TEXT name INTEGER atime INTEGER | tid | FK
INTEGER | blksize X
INTEGER | crtime tid
- INTEGER | ctime +
file_contents
, INTEGER | flags tags
INTEGER | ino PK,FK ino
>0 H{ INTEGER gid INTEGER | tid [ PK
INTEGER | page PK
INTEGER kind TEXT name
BLOB bytes
INTEGER | mtime
INTEGER | nlink
INTEGER perm
dir contents INTEGER rdev
= ino -
INTEGER | cnt ino | FK | >0———— INTEGER | size
INTEGER | dir ino | FK INTEGER | uid

Figure 3. Entity Relation Diagram (ERD) for the SQLite tables

On the other hand, a FUSE library is needed to interact with the FUSE kernel module.
Whilst libfuse is the standard FUSE API in C, Fuser will be used as a replacement for
libfuse's low-level APl to communicate with the FUSE kernel module using Rust. Creating
a File system in fuser requires an implementation of the fuser::Filesystem trait, which
roughly maps to the fuse_lowlevel_ops struct in libfuse. From 45 fuse_lowlevel_ops
methods, 39 of them exist also in fuser::Filesystem. However, not all of them need to be
implemented; only 13 of them are needed for the proposed Ffile system implementation.
Wwithin the scope of the proposed file system, only 7 of those are relevant, while the rest

are just standard file system operations, like reading from or writing to a file. Concisely,
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we can classify similar relevant methods into 5 groups, corresponding to each operation

in Table 3. Table 4 lists the mapping between user operations and file system methods.

Table 4. User operations and file system methods mapping

User operation  Method(s) Implementation detail

The mkdir method allows the user to create
directories. This is relevant because creating tags is
done by creating prefixed directories. However,
Creating tags mkdir creating nested redundant prefixed directories is not
allowed. For example, /notes/#biology/#biology is not
allowed, since the nested #biology prefixed directory is

redundant.

The mknod method is used to create new Ffiles, whilst
the rename method is used to move or rename files,
by changing or “renaming” the associated File path.
The mknod method is used to create file tag
associations by creating a new file inside a prefixed

Create file tag mknod
' directory, whilst the rename method is used to create

associations rename
File tag associations by moving a File to a prefixed
directory. The rename method is not exclusive to files;
directories can also be renamed or moved using the
same method. Note that renaming a prefixed directory

to an unprefixed one will throw an error.

The rename method can also be used to update File

tag associations by moving or renaming the path of a

Update file tag
rename File from having one prefixed parent to another. It can

associations
also be used to delete file tag associations by moving

a file from a prefixed directory to an unprefixed one.

The readdir method is probably the most important
readdir method within this implementation. It is used to list

List tagged Files '
lookup the inodes and names of children in a directory. On

unprefixed directories, the readdir method works
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User operation  Method(s)

Implementation detail

relatively simply by querying the dir_contents database
table. However, the readdir method doesn't work as
trivially on prefixed directories. It needs to list nested
prefixed directories by also querying the dir_contents
database table. On top of that, it must list all
unprefixed directories and files associated with the
prefixed parent directory. Figure 4 is an example of a
query that does just that. Since the readdir method
only exposes the inodes and names of a directory's
children, the lookup method is subsequently used to
get correlated attributes for each child. The lookup
method also uses Figure 4 on a prefixed directory to
fetch associated children attributes based on their

names.

Delete tags rmdir, unlink

The rmdir method is used to remove directories,
whilst unlink is used to remove files. The unlink
method is called as such because it decrements the
nlink attribute of a file (i.e, the number of hard links
to a Ffile). Once a file has zero hard links, it will be
removed. To completely remove a tag, the user must

remove all associated Ffiles and directories. One

caveat is that calling rmdir on a prefixed directory will

not remove its children4.

To Facilitate 5 of the 7 relevant methods described in Table 4 (i.e, lookup, readdir, rmdir,
unlink, and rename), a common and crucial database query pattern arises. These queries
are used to fetch attributes of a File associated with two or more tags. Figure 4 is an

example of such a query. The prominence of these queries is present in methods that

* The corresponding command for calling the rmdir method in Linux is the appropriately called

rmdir; this is not to be confused with rm -r, which removes a directory and its contents recursively.
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require reading the contents of a prefixed directory. Because of the length and many

uses of these queries, a helper function is created within the implementation to reduce
code duplication. This helper function was called chain_tagged_inos, and an algorithmic
pseudocode notation of this function is shown in Algorithm 1. For example, Figure 4 can

be easily created by calling Algorithm 1 with input g as "SELECT * FROM file_attrs WHERE
ino IN", and T as {1,2}.

Algorithm 1: Pseudocode for the chain tagged inos helper function

Input: initial query ¢, tag set T" with length n
1 FOR:=0TOn
2 | Push “SELECT ino FROM associated_tags WHERE tid = 7."into g

3 IF 2 ISNOT n

4 Push “AND ino IN ("into g

5 FOR:=1TOn

6 | Push")"into ¢

1 SELECT * FROM file attrs WHERE ino IN ( SQL
2 SELECT ino FROM associated tags WHERE tid = 1 AND ino IN (

3 SELECT ino FORM associated tags WHERE tid = 2

4 )

5 )

Figure 4. An example SQLite query for listing the attributes of Ffiles associated with

tags with tid 1 and 2

To conclude the implementation section, Figure 5 provides a simple running example
for a write operation that spans the user request through PreTFS, SQLite, and the rest
of the kernel space components. Below are explanations for each step of the process.

1) The user triggers a write() system call for a File located within the PreTFS File
system. This request is sent to the VFS.

2) The VFS hands the request off to the corresponding file system where the File
lives. In this case, since the responsible file system is PreTFS — which is a FUSE
fFile system — the FUSE kernel module will handle it.

3) The FUSE kernel module forwards the request to PreTFS via system calls.

4) PreTFS updates the relevant tables within the SQLite database.
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5) Since SQLite databases take the form of a File, a request to update the

database file is sent to the VFS via system calls.

6) The VFS routes the request towards the file system holding the database Ffile
(i.e, btrfs).

7) Finally, btrfs writes the updated database file to the disk partition.

L . @

C’ ©
btrfs | FUSE ----->| PreTFS |

Y

% } Disk partitio I S

Kernel space User space

)

Figure 5. Diagram of how a write operation is handled. Dashed lines represent system

calls.

3. RESULTS AND DISCUSSION

3.1. Use Case Demonstration

In this section, a synthetic scenario of Figure 2 will be implemented within PreTFS.
Figure 6 shows the hierarchical structure of this experiment. The bracketed numbers (e.g,
[1]) show the corresponding inode of each Ffile. Conceptually, the demonstration confirms
that PreTFS can represent the proposed design correctly. It shows how a single inode
(biochemistry.md) can surface in every prefixed path that matches its semantic tags, such
as /notes/#biology and /notes/#biology/#chemistry, without duplicating the underlying
entry. The consistent inode numbering across these directories illustrates that the tag
intersections are derived simply by nesting prefixed directories, not by copying or
renaming files. Simultaneously, the example preserves the expectation that unprefixed
directories like /notes/assignments behave identically to a traditional hierarchy, ensuring

the overall structure remains interoperable with conventional tools.
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[ 1] notes/
— I 4] assignments
| 5] dissertation.tex
— I 2] #biology
| I 8] assignments
| 9] taxonomy.md
| — I 71 biochemistry.md
| 6] #chemistry
| — 7] biochemistry.md
L— 3] #chemistry

— 1 10] #attachments

—

71 biochemistry.md

7 directories, 5 files

Figure 6. Result of running the command tree --inodes notes/

3.2. Performance Analysis

Whilst PreTFS implementation in this paper does not primarily Focus on performance,
this section will discuss the benchmarks done on PreTFS. Figure 7 shows metadata-
related benchmarks, whilst Figure 8 shows 10-related benchmarks. In addition, Table 5
displays a comparison of median values for the benchmark. Within the benchmarks, the
SQLite database file for PreTFS resides within the same btrfs File system that it is
compared to. For each benchmark iteration (i.e, the x-axis), 100 runs are measured. Every
set of diagrams in a row is measured using the same command; depending on the
iteration, as shown in Table 6. Caching is disabled to ensure consistency between
benchmark runs. This is done in two parts: (1) kernel caches are dropped prior to every
run by running “sync; echo 3 > /proc/sys/vm/drop_caches”, and (2) SQLite page and
statement caching is disabled by setting the cache_size "PRAGMA" and the

statement_cache_capacity connection option to O.
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Figure 7. File metadata related benchmarks of btrfs and PreTFS
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Figure 8. File content related benchmarks of btrfs and PreTFS

Lie Steven Staria Nugraha, Fahri Firdausillah | 492



Published By
‘Il > Asosiasi Doktor
\ﬁ‘ Sistem Informasi Indonesia

Table 5. Comparison of benchmark results between PreTFS, btrfs, and their overhead.

PreTFS btrfs Overhead
Benchmark
min max avg min max 3avg min max avg
Lookup 10Oms 29ms 18ms 7ms 9ms 8ms 2ms 20ms 10ms

Directory creation 26ms 8Ims 5Ims 7ms 8ms 8ms 18ms 73ms 44ms

Read Ims 12ms 10ms 7ms 8ms 7ms 1Tms 4ms 3ms

Write 30ms 169ms 92ms 8ms 9ms 9ms 2Ims 160ms 83ms

Table 6. Commands ran for each benchmark

Benchmark Command
Lookup Is mountpoint/{nested-directories}/file
Directory creation mkdir -p mountpoint/{nested-directories}
Read cat mountpoint/file
Write cat /dev/random | head --bytes {file-size} > mountpoint/file

3.3. Performance Summary

The benchmarks indicate that PreTFS introduces measurable overhead across lookup,
creation, read, and write operations, mainly due to FUSE syscall latency [19], [20] and
additional SQLite queries for tag intersections and paged file contents. However, these
costs remain bounded and predictable, and they trade off against stronger semantic
Flexibility and interoperability goals. Figure 7, Figure 8, and Table 5 reveal the following
performance characteristics for each benchmark category:

1)  Lookup performance: Diagrams (A) and (B) in Figure 7, along with the First row
of Table 5 show PreTFS has linear lookup times (~10-29ms) depending on
nesting level, compared to btrfs (~8ms). This results in an average overhead
time of ~10ms.

2) Creation performance: Diagrams (C) and (D) in Figure 7, along with the second
row of Table 5 demonstrate linear scaling for PreTFS (~26-81ms) versus
constant time for btrfs (~8ms). Resulting in an average overhead of ~44ms.

3) Read performance: Diagrams (E) and (F) in Figure 8, along with the third row

of Table 5 display non-linear yet variable results for PreTFS (~10-13ms). On the
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other hand, btrfs maintains a more consistent performance (~7ms). Resulting

in the smallest average overhead of ~3ms.

4) Write performance: Finally, diagrams (G) and (H) in Figure 8, along with the
Fourth row in Table 5 highlight the biggest performance contrast between the
two File systems. The benchmarks show that PreTFS linearly scales for each
size increase (~30-169ms), whilst btrfs is indifferent between write sizes (~9ms).

The overhead for this benchmark is also the highest at ~83ms.

Acceptable use cases include research or documentation collections that need multiple
semantic views, environments where metadata richness matters more than raw
throughput, and workflows that already tolerate FUSE latency because they mainly serve
human users rather than bulk automated workloads. Unacceptable use cases are latency-
sensitive bulk transfers, database servers that demand kernel-level throughput, storage
For larger File sizes like modern video games, or where the added latency overhead would

conflict with strict service-level objectives.

3.4. Discussion

The proposed file system design in this paper delivers a cohesive semantic experience,
reliably surfacing prefixed files through standard utilities and giving users immediate
organizational clarity without leaving the familiar hierarchy. Furthermore, the PreTFS
implementation proves the Ffeasibility of such a design. And Finally, benchmark
evaluations show that while there may be room for performance improvements, the
proof-of-concept implementation suffices in use cases where metadata structure is

pertinent.

One example implication of this paper is that the proposed file system may help in the
digitalisation of personal information management or PIM systems [21]. A recent survey
[7]1 shows gaps between actual and ideal PIM-related behaviors. Whilst the study shows
that most of the gaps can be attributed to the user's ineffective usage of already existing
PIM Features, tagging stands out as the most prevalent underused feature. This may be
caused by the lack of native tagging support in existing file systems, which is what this
paper tries to solve. Still on the subject of PIMs, the proposed Ffile system in this paper

may aid File categorization described in the personal information organization process
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(P1OP) [22] by allowing scenarios where the user evaluates that a file should reside in

multiple directories. The PIOP paper [22] also states that one of the ways users categorize
their Files is by identifying the File type through the file extension. However, another
research indicates that many users lack a Functional understanding of File extensions
[23], suggesting that semantic tagging provides a more accessible retrieval mechanism.
To wrap up the discussion on PIMs, a recent review on the future of PIMs [5] correctly
states that File system design has not evolved in adoption for decades, and that support
For interlinking is lacking. The File system proposed within this paper provides interlinking

in the form of semantic categorization, and may be a candidate for the Future of PIMs.

While the design proposed in Section 2.1 establishes a robust framework for hierarchical
interoperability, certain architectural choices necessitate trade-offs. Although the system
successfully manages the majority of standard operational scenarios, specific edge cases

regarding data persistence and naming conventions warrant further discussion:

1) Superset duplicate handling

A significant challenge arises when distinct files share the same name but possess
overlapping tags. For instance, if note.md exists in /notes/#biology/ and a different
note.md exists in /notes/#biology/#chemistry/, both theoretically belong in the
/notes/#biology view. However, since standard File systems prohibit duplicate filenames
within a single directory, an ambiguity arises. The current implementation resolves this
by displaying only the first File instance retrieved from the database. While automated
renaming strategies (e.g, prepending numerical identifiers like 1-note.md) were
considered, they were rejected to avoid conflicts with existing user-defined naming

conventions.

2) Persistence of orphaned views

A dissonance exists between standard directory removal and the system’s semantic logic.
When a user deletes a tag-directory (e.g, /notes/#biology), its subdirectories (e.g,
assignments) are removed from the immediate hierarchy. However, their records persist
within the database, effectively becoming “orphaned” from the view. While implementing
a "pruning” mechanism to scrub these orphans is possible, the design prioritizes data

safety. Consequently, deletion operations on tag-prefixed directories are strictly scoped
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to the view model, ensuring that modifying the navigational structure does not

inadvertently destroy the underlying file content.

3) Optimal prefix

The choice of the prefix delimiter presents a trade-off between visual distinctiveness
and shell compatibility. While the default hash symbol effectively distinguishes semantic
tags from standard directory names, it conflicts with shell comment syntax. Alternative
delimiters (such as! or &) pose similar challenges regarding history expansion or
background process execution. To address this, PreTFS supports configurable multi-
character prefixes (i.e, string prefixes). This allows the namespace delimiter to be
extended beyond a single character, significantly reducing the probability of collision

with both shell interpreters and existing File naming conventions.

4) Intersection exclusivity

The hierarchical mapping of tags inherently restricts the system to a single set operation.
In the proposed design, prefixed directory nesting denotes the intersection of tags (i.e,
the N operator, Ffiltering for Files containing all specified tags). While the architecture
could effectively model tag unions (i.e, the U operator, aggregating files containing any
of the tags), the linear nature of directory traversal prevents the simultaneous

application of both intersection and union operators within the same path structure.

Finally, for Future work, performance could be optimized through several strategies. One
such way is by handing off File storage to the native file system, which might grant native
read/write performance. On the other hand, metadata operations within a File system
aren't usually performance-intensive. However, metadata operations account for ~80%
of all File system operations [24], and improving their performance might yield significant
results. There are many ways to improve metadata operations, such as optimizing dentry
caches [25], among others. Further research may also focus on migrating the
implementation entirely to a native kernel File system. There also exist recent FUSE-like
innovations such as Direct-FUSE [26], which bypasses system calls between the kernel
and user space. Another FUSE improvement called DeFUSE [27], might also improve
performance by isolating file content related request within the kernel space, whilst still

allowing metadata requests through the user space.
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4. CONCLUSION

This paper presents the design, implementation, and evaluation of a tag-based semantic
File system that uses a novel approach of using prefixed directories to represent tags.
Its prefix-driven structure keeps conventional hierarchies intact while letting users
express semantic intersections directly within the existing namespace. The PreTFS
implementation proves that the proposed design can be realized. Performance evaluation
reveals expected implementation overhead, with slower performance compared to a
kernel space File system (i.e, btrfs), that may scale linearly in certain scenarios. These
trade-offs are inherent to the FUSE architecture, in addition to an SQLite-backed
approach, representing an acceptable cost for gaining better ease of development and
installation compared to kernel space file systems. Comparison with existing tag-based
File systems demonstrates that the proposed design provides a simpler, more
straightforward approach to semantic categorization, whilst allowing conventional
programs to interact with it seamlessly. Future work may include: (1) offloading File
content to the underlying file system, (2) exploring kernel space implementation, and (3)
investigating modern Ffile system frameworks and architectures Ffor improved

performance.
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