Journal of Information Systems and Informatics

V Vol. 5, No. 1, March 2023 e-ISSN: 2656-4882 p-ISSN: 2656-5935
il 2 DOI: 10.51519/journalisi.v5i1.431 Published By DRPM-UBD

Implementation of Automated Test Case Generation in
REST API on Android-Based Koperasi Application

Syamsul Mujahidin!, M. Reinaldy Hermawan?, M. Chandra Cahyo
Utomo?

123Informatics Study Program, Institut Teknologi Kalimantan, Balikpapan, Indonesia
Email: 'syamsul@lecturet.itk.ac.id, 211181051 @student.itk.ac.id, 3ccahyo@lecturer.itk.ac.id

Abstract

This study is focused on developing a data collection system to enhance the performance
of Koperasi, an organization with complex data collection. An Android application was
created to automate the processing of member and transaction data, significantly
improving data processing efficiency. However, building a quality system takes time and
requires error-free data processing. To achieve this, Automated Test Case Generation with
EvoMaster was used to test the REST API and identify errors. The testing process went
through several iterations until almost no errors were found. EvoMaster generated over
19.5 million scenarios and found 78 errors in the REST API in 58 hours, which were
promptly fixed between iterations. The use of EvoMaster not only reduced development
time but also helped maintain code quality.

Keywords: Android, EvoMaster, REST API, Testing, Test Case Generation

1. INTRODUCTION

A koperasi is an organization established and run by individuals who share
common goals and interests [1]. As the size of a koperasi grows, processing the
associated data becomes increasingly difficult, necessitating the development of a
system to manage this process. The proposed system comprises an Android
application as a frontend, a cloud server for data storage, and a REST API to
connect the Android application to the cloud server. Android was chosen as the
platform for this system due to its widespread use, with at least 3.79 billion people
or approximately 51% of the global population reported to be using mobile
devices as of January 2016 [2].

Developing a complete software system is a complex and time-consuming process
that requires careful planning and execution. To ensure that the system is of high
quality and meets the needs of its users, it is essential to thoroughly test the various
components of the system, including the REST API [3]. Test case generation is a
crucial aspect of software development, as it ensures that an application functions

123

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://doi.org/10.51519/journalisi.v5i1.431
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Journal of Information Systems and Informatics
Vol. 5, No. 1, March 2023

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi ¢-ISSN: 2656-4882

correctly and meets user requirements. REST APIs, which provide a standardized
means for applications to exchange data, are especially critical to test as they serve
as the backbone of many modern applications [4].

Numerous studies have been conducted on test case generation in software
development, with the goal of identifying and fixing bugs or issues before the
application or system is released to end users. For instance, Zhang et al. [5]
proposed an enhanced search-based method for automated system test generation
for RESTful web services that uses a set of effective templates to structure test
actions based on the semantics of HTTP methods used to manipulate web service
resources. Stallenberg et al. [6] proposed a new approach for generating test cases
for RESTtul web services using Agglomerative Hierarchical Clustering (AHC) to
infer a linkage tree model. Results from the empirical study showed that the
proposed approach, LT-MOSA, provides a statistically significant improvement in
branch coverage and real-fault detection compared to existing state-of-the-art
techniques, MIO and MOSA. Corradini et al. [7] presented the findings of an
empirical comparison of automated black-box test case generation approaches for
REST APIs. The testing results were analyzed and compared in terms of
robustness and test coverage, with RestTestGen, RESTler, bBOXRT, and
RESTest identified as four usable prototypes that were employed to generate test
cases for 14 real-world REST services. The results showed that RESTler was the
most reliable tool, able to test all case studies successtfully, while RestTestGen
scored the highest coverage, suggesting that its testing strategy is the most effective
in testing REST APIs.

However, in general, these studies have weaknesses in terms of the Test Case
Generation method's use in developing REST APIs, specifically in limited
coverage and maintenance. Test cases generated using automated methods may
fail to cover all possible scenarios, resulting in limited coverage and potential gaps
in the testing process. Additionally, test cases generated for REST APIs may need
to be updated frequently as the API evolves, making test case maintenance a
continuous effort.

In this research, Test Case Generation was employed to address the problems of
limited coverage and maintenance by using EvoMaster [8]. EvoMaster is a tool
that automatically creates unit test cases for REST API, which are tests executed
by the developer to ensure that the program meets the design specification and is
free from bugs [9]. By using the Many Independent Object (MIO) Algorithm,
EvoMaster can create test suites for systems with a large number of test targets,
making it an effective tool for testing the REST API [10]. With the implementation
of Automated Test Case Generation, the hope is that data processing can be done
without errors and that it can help streamline the koperasi's business processes.

124 | Implementation of Automated Test Case Generation in RES'T API on Android

Journal of Information Systems and Informatics
Vol. 5, No. 1, March 2023

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi ¢-ISSN: 2656-4882

In a recent study, a koperasi system was also developed on other platforms, such
as the web and Windows desktop [11], [12]. Both platforms used black box testing,
which only tests the behavior of the system and not its logical aspects. Thus, black
box testing may not detect errors in the code. Therefore, the use of white box
testing in Automated Test Case Generation is crucial. In the recent study by Arcuri
[10], EvoMaster detected 80 new errors in five of the web services used. These
errors were not detected by manually written test cases, highlighting the
importance of EvoMaster in improving the quality of the system. Implementation
of EvoMaster can significantly reduce the development time while maintaining the
code's quality in the system.

2. METHODS

The method of this research involves several steps, including compiling the
business requirements and processes of the koperasi, developing the application
system which includes the Android application, database, and REST API. The
testing process implemented Automated Test Case Generation in the REST API
using EvoMaster. The Android application and REST API were built using Kotlin
programming language with the Spring Boot Framework, while MySQL and
XAMPP were used for the system database. Finally, the unit test cases for the
REST API were automatically generated using EvoMaster during the testing
process.

2.1. System Development

The system has been divided into three distinct components: the Android
application serving as the frontend, the database system for storing and
automating data, and the REST API acting as the backend. To construct the
Android application, the Model-View-ViewModel (MVVM) architecture [13] was
implemented. This decision was made based on the findings of a study conducted
by Tian Lou, which concluded that the MVVM architecture outperformed other
architectures in the context of Android development [14]. Moreover, the Android
application adopts the Clean Architecture to delineate the code's responsibilities
[15]. The Android application was tailored to the business process use case
compiled earlier.

Syamsul Mujabidin, M. Reinaldy Hermawan, at all | 125

Journal of Information Systems and Informatics
Vol. 5, No. 1, March 2023

p-ISSN: 2656-5935

http://journal-isi.org/index.php/isi

e-ISSN: 2656-4882

User

int »0—

50—

A)QPK id_user
email : string
password hcrw:
status : string
name string
year_in : year
year_out year
faculty E string
address string
job string
job_address string
phone string
whatsapp : string
$PK id_deposit Dot
—*:-’flglzrirdiuser int
month date
payment_date date
voluntary int
status bool

The database system was created using MySQL based on the Entity Relationship
Diagram that was developed during the compilation of the business requirements.
The diagram is illustrated in Figure 1. The data flow diagram, which shows the
data flow of authentication, storage, deposits, and data export, is presented in
Figure 2. The database system comprises tables that represent data entities, triggers
that automate state changes in the data, and events and procedures that schedule
routine data changes, such as monthly deposits for users. After the database
system has been developed and is ready, it will be exported to the Virtual Private

Server (VPS).

Registration

'PK id _registration

- 'FK id_user
image
status

date

’PK id_transaction
e
total
image
type
status

date

pay_date

$rK id_cart

int
file
string

date

Transaction
il T'FK id_transaction_detail i
int $ex id_transaction

b 'FK id_user

i 'FK id_deposit

’FK id_item
qty

total

Transaction_Detail

int §ek id_deposit int
file —M’FK id_item int
string aty int
string total int
date
date
—odfeK id_item int
int name string
int price int
int desc string
int AH— stock int
int image file
int status bool

Figure 1. Koperasi Entity Relationship Diagram

126 | Implementation of Automated Test Case Generation in REST API on Android

Journal of Information Systems and Informatics
Vol. 5, No. 1, March 2023

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi ¢-ISSN: 2656-4882
luran luran

luran

Anggota _Anggota

<-‘ Anggota

Pembayaran

luran

— 4. Pembuatan
Anggota Anggota 1 Autentikasi BerkasExcel |

Pembayaran

Anggota Rekap Tahunan

luran Barano

Transaksi

Pengurus

Transaksi

Bar Barang —_—

L—Pembayaran—p- S MINE 1 i Transaksi

Troli

Barang

Troli——————p Troli

Transaksi

Figure 2. Koperasi Data Flow Diagram level 1

The REST API functions as the system's backend, and it was developed using the
Spring Boot framework. The reason for choosing Spring Boot is that the
EvoMaster tool requires the REST API to run on the Java Virtual Machine (JVM)
to generate white box test cases [10]. In Spring Boot, the classes are separated into
three: the Model class, which defines the data blueprint models; the Repository
class, which accesses the database and creates the query; and the Controller class,
which defines the endpoint and processes the data from the user and the data to
be sent to the user. Additionally, there is a Utility class for other utility functions,
such as Firebase notifications, file exporter, and image loader. Once the REST
APl is completed, it will be exported to the same VPS that contains the database
system, enabling the Android application to remotely access the data from the
database via the internet.

Syamsul Mujabidin, M. Reinaldy Hermawan, at all | 127

Journal of Information Systems and Informatics
Vol. 5, No. 1, March 2023

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi ¢-ISSN: 2656-4882

2.2. REST API Testing

To reduce development time and maintain code quality, Automated Test Case
Generation was implemented in the testing process. EvoMaster tools were utilized
for this purpose. EvoMaster generates white box test cases to ensure the quality
of the automatically created test cases [10]. The tool is run several times, and any
bugs found are fixed between runs. The tool is run until it no longer identifies any
major bugs or errors in the code. In order to run EvoMaster in white box testing
mode, a driver class is required. The driver class contains variables needed by
EvoMaster, such as the database specification, REST API scheme, code package,
and output format.

3. RESULTS AND DISCUSSION
3.1. System Results

The MySQL database was developed and exported to the VPS for remote usage,
consisting of eight tables that represent stored data such as users, items, and
transactions. Trigger functions automate data changes, such as decreasing item
stocks when transactions are confirmed, while procedures and events schedule
changes such as yearly deposit invoices for each user.

The REST API was developed using Kotlin programming language and the Spring
Boot framework, exported to VPS for remote usage. It includes 47 endpoints,
categorized into seven controller classes based on their major features, such as
registration, transactions, and items. Some endpoints return images and Excel files,
while the API also serves as a backend and sends push notifications via Firebase
Cloud Messaging when a specific endpoint is hit.

Developed with Kotlin programming language and Android Studio, the Android
application has two levels of usage: admin and member. Admins can modify data,
such as item changes, user confirmation, transaction confirmation, and export
data. Members can pay monthly deposits, explore item lists, and carry out
transactions, as shown in Figure 3. The application performs koperasi's business
processes, such as monthly deposits and item transactions, and connects to the
database via the REST API and the internet, allowing koperasi members to
conduct their business entirely online.

128 | Implementation of Automated Test Case Generation in RES'T API on Android

Journal of Information Systems and Informatics
Vol. 5, No. 1, March 2023

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi ¢-ISSN: 2656-4882
s an e Y D] L K) (X XK Zx
SortBy Vv | Search Q | sortbyv || se Q @ Muhamad Reinaldy Her...
» 17/06/2022 20:1 v
8 16/06/2022 20:52
7 Total: Rp 33500 7 i potite
Unpsid 7) 13/06/2022 16:38
1 Rp 75000 8 chang: d
6) 130062022 1626
Ya‘x‘al 9 e s n,‘o<‘,‘/zuzz‘ws 58 / € Dark Mod
t o !’:2;2223 (o) owonzzooas wpwuunou wpxuuno
2 08/04/2022 00:25 ® Lanoua e
Browse items in shop 2 1 Rp 65000
CEEER 2) 08/04/2022 00:25 Eross
ol Ro 15000 —..
‘ = o L 2 L o L] = o L]

Figure 3. Android apphcatlon UI

3.2. REST API Testing Results

To ensure effective testing, an Automated Test Case Generation approach was
implemented in the REST API. EvoMaster, a tool that uses the MIO algorithm,
was employed to automatically generate test cases using white box testing. The
tool was run multiple times, with bug fixing performed in between the iterations.
In total, EvoMaster was run 8 times, accumulating 58 hours (approximately 2 and
a half days) of runtime. The tool generated over 19.5 million test cases and
detected 78 errors. For further details on each iteration, please refer to Table 1.

Table 1. EvoMaster detailed results

Runtime Unit Evaluated Evaluated Potential

No. (Hour) Test Tests Actions Faults Endpoint
1 1 98 320.753 342.872 32 38/42
2 2 75 570.571 615.993 15 38/42
3 3 84 1.859.532 1.920.918 14 36/38
4 4 75 2.374.426 2.494.373 9 36/38
5 6 66 1.550.274 1.655.871 2 38/38
6 6 66 2795382 2.916.934 3 38/38
7 12 64 2.876.760 3.085.596 2 42/42
8 24 87 7.179.681 7.677.806 1 43/43

As shown in Table 1, the runtime increased with each iteration due to the previous
iteration's unsatisfactory code coverage. The runtime increased until the code
coverage and the results met the expected standards. Additionally, the number of
evaluated tests continued to increase as the runtime increased. The number of
errors found by EvoMaster also decreased with each iteration. This indicates that
the code quality improved after the identified errors were resolved. Figure 4 shows
the graphical representation of the results.

Syamsul Mujabidin, M. Reinaldy Hermawan, at all | 129

Journal of Information Systems and Informatics
Vol. 5, No. 1, March 2023

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi ¢-ISSN: 2656-4882

EvoMaster Results

100% . — - — 30
R

80% 25
70% 0
60%
50% 15
40%
30% 10
20% 5
10%

0% = 0

1 2 3 4 5 6 7 8

Unit Test mmm Potential Faults === Runtime (Hour)
Figure 4. EvoMaster results graph

As noted in the previous study [10], the EvoMaster tool still has limitations when
dealing with REST APIs that interact with SQL databases. This is due to the fact
that EvoMaster cannot access the database directly, but only through the REST
API. As an example, the user table in the database uses a unique key on the email
field, but EvoMaster failed to create a test case to verify if an email was already
registered, which could potentially lead to system bugs. However, recent research
has shown that the handling of SQL databases can be improved [16], and
hopetully, the results of future Automated Test Case Generation implementations
for REST APIs will reflect this improvement.

Table 2. API Test Comparison

No. Approach Class LOCs Endpoints Coverage (%)
1 Black-box 20 1.540 25 80
2 EvoMaster 30 3.276 42 60

Table 2 presents the results of the API Test comparison between the black-box
approach and EvoMaster in terms of identifying faults in the source code. The
data suggests that the black-box approach achieved a higher coverage rate of 80%,
while the EvoMaster approach had a coverage rate of 60%. These findings imply
that the black-box approach is more effective in finding bugs. However, despite
the higher coverage rate, the EvoMaster approach generated more classes, LOCs,
and endpoints than the black-box approach. These results indicate that the
EvoMaster approach has a more comprehensive testing coverage.

130 | Implementation of Automated Test Case Generation in REST API on Android

Journal of Information Systems and Informatics
Vol. 5, No. 1, March 2023

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi ¢-ISSN: 2656-4882

3.3. Discussion

Developing a software application is a complicated process that requires careful
planning and attention to detail. As mentioned in the article, selecting the
appropriate tools and technologies is crucial to ensuring the software is efficient
and reliable. For instance, using Kotlin and MySQL to build the Android
application and database, respectively, were critical in ensuring the software's

quality.

Automated test case generation is a fundamental aspect of software testing, and
EvoMaster is a tool that automates this process. The article discusses EvoMastet's
effectiveness in generating test cases and discovering bugs. Although EvoMaster
generated a significant number of test cases, it was not as effective as the black-
box approach in finding bugs. This emphasizes the importance of selecting the
right testing approach and tools to ensure that the software is thoroughly tested.

Code coverage is a crucial aspect of software testing as it ensures that all parts of
the code have been tested. As highlighted in the article, the use of EvoMaster
resulted in a significant increase in code coverage with each iteration. However,
the black-box approach achieved a higher code coverage rate compared to
EvoMaster. It is therefore essential to test the software thoroughly to achieve a
high code coverage rate.

The article discusses the importance of software testing in ensuring that the
software is efficient and reliable. There are different types of testing, including
black-box testing and white-box testing. Both approaches have their advantages
and disadvantages, and it is important to choose the right approach for testing.
Black-box testing is useful for testing the functionality of the software, while
white-box testing is useful for testing the code's internal structure.

In conclusion, software development and testing require careful planning and
attention to detail. The use of the right tools and technologies is essential in
ensuring that the software is efficient and reliable. The article emphasizes the
importance of automated test case generation, code coverage, and software testing
in ensuring the software's quality. It is important to choose the right approach for
testing and to choose the right tools to ensure the software is thoroughly tested.

4. CONCLUSION

The development of the koperasi system was a significant accomplishment that
included the integration of the Android application, REST API, and database. This
integration created a complete system that simplifies the business process and data
processing for koperasi members and the koperasi admin. To maintain the code
quality and reduce the development time, the team implemented Automated Test

Syamsul Mujabidin, M. Reinaldy Hermawan, at all | 131

Journal of Information Systems and Informatics
Vol. 5, No. 1, March 2023

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi ¢-ISSN: 2656-4882

Case Generation using EvoMaster. The tool was executed in eight iterations and
took approximately 58 hours, which found over 19.5 million test cases and 78
faults in the code. The tool also shortened the development time by generating
test cases that would have otherwise taken weeks or months to do manually.

However, EvoMaster had limitations when testing the REST API that interacts
with SQL databases. Since EvoMaster only interacted with data through REST
API responses, it could not access the database directly, hindering its ability to test
the REST API's SQL database interactions thoroughly. Despite this limitation, the
koperasi system's successful development and testing highlighted the importance
of using the right tools and technologies to ensure the software is efficient and
reliable. The team's emphasis on automated test case generation and code coverage
ensured that the koperasi system was thoroughly tested, making it a reliable and
efficient solution for koperasi businesses.

REFERENCES

[1] H. Hendra, S. N. Arfandi, Andriasan Sudarso, and U. T. H. H. M. P. S. M.
B. Vivi Candra, Manajemen Koperasi. Yayasan Kita Menulis, 2021.

[2] H. Tolle, A. Pinandito, A. P. Kharisma, and R. K. Dewi, Pengembangan
Aplikasi Perangkat Bergerak. Universitas Brawijaya Press, 2017.

[3] A. G. Clark, N. Walkinshaw, and R. M. Hierons, “Test case generation for
agent-based models: A systematic literature review,” Inf Softw Technol, vol.
135, p. 106567, Jul. 2021, doi: 10.1016/J.INFSOF.2021.106567.

[4] N. Gupta, V. Yadav, and M. Singh, “Automated Regression Test Case
Generation for Web Application,” ACM Computing Surveys (CSUR), vol. 51,
no. 4, Aug. 2018, doi: 10.1145/3232520.

[5] M. Zhang, B. Marculescu, and A. Arcuri, “Resource-based Test Case
Generation for RESTful Web Setvices,” GECCO 2019 - Proceedings of the
2019 Genetic and Ewvolutionary Computation Conference, pp. 14261434, Jul.
2019, doi: 10.1145/3321707.3321815.

[6] D. Stallenberg, M. Olsthoorn, and A. Panichella, “Improving Test Case
Generation for REST APIs Through Hierarchical Clustering,” Proceedings -
2021 36th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2021, Pp- 117-128, 2021, doi:
10.1109/ASE51524.2021.9678586.

[7] D. Corradini, A. Zampieri, M. Pasqua, and M. Ceccato, “Empirical
Comparison of Black-box Test Case Generation Tools for RESTful
APIs,” Proceedings - IEEE 21st International Working Conference on Source Code
Apnalysis and Manipulation, SCAM 2021, pp. 226-236, 2021, doi:
10.1109/SCAM52516.2021.00035.

[8] A. Panichella, F. M. Kifetew, and P. Tonella, “Automated test case
generation as a many-objective optimisation problem with dynamic

132 | Implementation of Automated Test Case Generation in RES'T API on Android

Journal of Information Systems and Informatics
Vol. 5, No. 1, March 2023

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi ¢-ISSN: 2656-4882

selection of the targets,” IEEE Transactions on Software Engineering, vol. 44,
no. 2, pp. 122-158, 2017.

A. Tosun, M. Ahmed, B. Turhan, and N. Juristo, “On the effectiveness of
unit tests in test-driven development,” ACM International Conference
Proceeding Series, pp. 113122, May 2018, doi: 10.1145/3202710.3203153.
A. Arcuri, “RESTful API automated test case generation with EvoMaster,”
ACM Transactions on Software Engineering and Methodology (TOSEM), vol. 28,
no. 1, pp. 1-37, 2019.

M. S. Rumetna, T. N. Lina, and A. B. Santoso, “Rancang Bangun Aplikasi
Koperasi Simpan Pinjam Menggunakan Metode Research And
Development,” Jurnal SIMETRIS, vol. 11, no. 1, 2020.

I. G. T. Isa and G. P. Hartawan, “Perancangan Aplikasi Koperasi Simpan
Pinjam Berbasis Web (Studi Kasus Koperasi Mitra Setia),” Jurnal Ilmiah
Limu Ekonomi, vol. 5, no. 10, pp. 129-151, 2017.

D. C. Lee, K. M. Seo, H. M. Park, and B. S. Kim, “Simulation Testing of
Maritime ~ Cyber-Physical = Systems: Application of Model-View-
ViewModel,” Complexity, vol. 2022, 2022, doi: 10.1155/2022/1742772.

T. Lou, “A comparison of Android native app architecture MVC, MVP
and MVVM,” Eindhoven University of Technology, 2016.

R. C. Martin, J. Grenning, S. Brown, K. Henney, and J. Gorman, Clean
architecture: a craftsman’s guide to software structure and design, no. s 31. Prentice
Hall, 2018.

M. Zhang and A. Arcuri, “Enhancing Resource-Based Test Case
Generation for RESTful APIs with SQL Handling,” in Search-Based Software
Engineering: 13th International Symposinm, SSBSE 2021, Bari, Italy, October 11—
12, 2021, Proceedings, 2021, pp. 103-117. doi: 10.1007/978-3-030-88106-
1_8.

Syamsul Mujabidin, M. Reinaldy Hermawan, at all | 133

