Journal of Information Systems and Informatics

V Vol. 6, No. 2, June 2024 ¢-ISSN: 2656-4882 p-ISSN: 2656-5935
il 2 DOI: 10.51519/journalisi.v6i2.751 Published By DRPM-UBD

PyLe: An Interactive Tool for Improving Python Syntax
Mastery in Non-Computing Students

Alain Kabo Mbiadal, Bassey Isong?, Francis Lugayizi3

123Computer Science Department North-West University, Mafikeng, South Africa
Email: 'mbiadaalain@gmail.com, 2bassey.isong@nwu.ac.za, 3francis.lugayizi@nwu.ac.za

Abstract

The learning and mastering of programming language syntax pose a significant challenge
for non-computing students. Most teaching approaches and existing educational tools
often fail to address this issue. Therefore, this paper introduces an interactive learning
environment called PyLe, specifically designed for introductory programming in Python
programming courses. We evaluated the effectiveness of Pyle on first-year students at
North-West University in South Africa and the University of Yaoundé 1, Cameroon.
Firstly, the study conducts an experiment to assess the effect of PyLe on the time taken to
solve a problem and the response quality. Secondly, PyLe’s usability and its instructional
value were evaluated by the students and the instructors, respectively. The results from
post-test method and a quantitative survey indicate that PyLe improves students’ ability to
learn and master program syntax and has a high usability rate. Moreover, feedback from
students and teachers affirms PyLe’s potential to address programming syntax challenges
for non-computing students. However, the analyses revealed no real relationship between
the time taken to complete a task in PyLe and the quality of the solution. This study
contributes to improving the teaching and learning of computer programming, which has
been considered difficult for both computing and non-computing students.

Keywords: Computing programming, Program Syntax, PyLe, Teaching/Leatning
environments.

1. INTRODUCTION

Computer programming is widely recognized as an increasingly valuable skill in
most professional environments. It serves as an effective medium for fostering
computational thinking, which empowers an individual to analyse a problem,
comprehend its nature, and devise potential solutions [1]. Programming skills
necessitate students to grasp two key concepts: syntax, which pertains to the
structure of well-formed language programs, and semantics, which relates to the
significance or meaning of these programs. Moreover, the process of teaching and
learning computer programming is more complex than it appears. This is because
the objective of programming instruction is to equip students with the core
competencies needed to develop a program that addresses a problem by

1008

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://doi.org/10.51519/journalisi.v6i2.751
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Journal of Information Systems and Informatics
Vol. 6, No. 2, June 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi ¢-ISSN: 2656-4882

articulating a given solution in a programming language that is considered
inherently rigid and constrained. These programming languages comprise a
vocabulary, grammar rules, and meanings, along with a translation environment
designed to render their syntax machine-readable. Thus, the rigidity of
programming languages, in compatison to natural languages, contributes to the
difficulties faced by beginners in introductory programming (IP) modules. Given
this ugly development, current research works in the field of computer science
education (CSE) have proposed a plethora of teaching methods and tools to
mitigate most of the challenges encountered by programming novices. These tools
include the utilization of visual programming environments, visualization
environments, and educational environments for programming [2]—[14].
However, despite acknowledging the significance of these suggested tools, a
substantial body of research continues to reveal that students exhibit limited
interest in programming courses [9], [10], [15], [16]. Most of them remain at a
reproductive level of education when the course concludes [15]. This could
potentially explain why a significant proportion of students fail to acquire the basic
skills in IP [16]. Moreover, many students who complete such courses possess
minimal confidence in their programming skills [9]. They often struggle with
developing simple applications or even interpreting small fragments of code [10].
This collective evidence underscores the need for innovative approaches in
teaching and learning programming.

Furthermore, in the context of programming, the understanding of programming
language syntax is undeniably crucial to the creation and execution of appropriate,
semantically correct programs. It is challenging for a student who has not grasped
the syntax and usage of a basic programming concept to employ this concept to
solve a given problem, especially for non-computing students. Syntax errors in
programming often become a significant source of frustration, discouragement, or
even cause for dropping out for novices in IP modules [17]. Moreover, most
beginners encounter difficulties in understanding compiler error messages,
constructing a robust mental model for logical problem-solving, and
comprehending basic programming concepts. However, most of the existing tools
do not explicitly consider non-computing students and fail to address the syntax-
related issues they face. Consequently, in a previous study, we advocated for the
development of learning materials specifically designed for non-computing
students to enhance their IP skills [18].

This paper aims to design, implement, and evaluate an interactive web-based
environment to improve non-computing students’ understanding of programming
language syntax based on the method proposed in [18]. The study approach is
grounded in the cognitivism learning theory and incorporates interactive, visual,
and organized resources and activities. These elements are designed to
progressively prepatre students to construct and comprehend code effectively. In
response to the aforementioned frustration and demotivation, our proposed

Alain Kabo Mbiada, Bassey Isong, at all | 1009

Journal of Information Systems and Informatics
Vol. 6, No. 2, June 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi ¢-ISSN: 2656-4882

approach also integrates misconceptions about basic programming concepts into
the content. The motivation behind the development of this environment is to
consolidate a diverse set of contents into a single course that can be utilized in IP
courses. This consolidation aims to help non-computing students enhance their
understanding of syntax and the application of basic programming concepts.
Furthermore, the proposed tool can also assist teachers in an online or blended
learning scenario to swiftly process the syntax of basic programming concepts,
allowing them to devote the remainder of their time to problem-solving. This is
because, in most traditional IP courses, teachers spend more time grappling with
syntax issues than instructing beginners on problem-solving, often within a very
limited timeframe. In addition, it can be employed to subsequently identify specific
misconceptions related to non-computing students. Therefore, this papet’s
objective is to answer the following research questions (RQs):

RQ1: Which novel learning environment can be designed to enhance students’
programming syntax skills?

RQ2: How does such a learning environment influence students’ performance
in terms of learning and mastering program syntax?

RQ3: How good is the learning environment’s usability and what potential
effects does it have on the instructional process?

These RQs guide the design, development and evaluation of the proposed learning
environment's potential for enhancing the learning experience of non-computing
students. The findings obtained were critically analysed and presented. Thus, the
contribution of this paper is summarized as follows.

1) We designed a module layout for introductory Python programming and
developed an interactive learning environment, Pyle, to introduce non-
computing students to Python. It includes activities to assess students'
ability to learn and master syntax, visualizations to enhance understanding
of basic Python concepts, and resources focused on everyday problems
with minimal mathematical challenges.

2) Conducted experiments to assess the impact of the proposed PyLe on the
teaching and learning of programming and its usability, respectively.

3) Provided discussion on the effectiveness of PylLe and the comparison
with other existing web-based learning environments.

This document is organized as follows: Section 11 presents the method used and

Section III presents the results. In addition, Section IV presents the paper
discussion and Section V concludes the paper.

1010 | PyLe: An Interactive Tool for Improving Python Syntax Mastery in Non

Journal of Information Systems and Informatics
Vol. 6, No. 2, June 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi ¢-ISSN: 2656-4882

2. METHOD
This section covers the literature review, research method, and procedure.
2.1. Literature review

This study completed a comprehensive review to identify the gaps in the existing
tools and provide some background information. Therefore, this section presents
some of the relevant background information and related works, including the
tools developed to improve beginners' programming skills. We reviewed the
development of web-based tools integrating several types of intelligent learning
content for IP courses for first-year students, such as visual programming
environments, visualization environments, and educational environments for
programming.

2.11. Programming and Syntax Errors

Computer programming is the process that formulates instructions for a computer
to execute to solve a problem. To effectively solve a problem, these instructions
must adhere to certain rules and semantics that are specific to the programming
language employed. These programming languages’ syntax rules include norms for
wortds, symbols, and punctuation. In the programming context, the journey of
learning to program is often riddled with mistakes, and beginners invariably
commence coding with syntactical errors, and as they progress, semantical errors
become an increasingly prevalent aspect of their programming experience [19].
Syntax errors, therefore, emerge as one of the most common types of errors in IP
modules, which often lead to student frustration, high failure rates, and even
module abandonment [17], [20]. The challenge is particularly intense for non-
computing students, who tend to struggle more compared to their computing
counterparts [21]. In such scenarios, tailored support can prove to be immensely
beneficial, especially if the students are spending a significant amount of time
grappling with specific mistakes. This support can help them overcome their
challenges more efficiently and improve their learning experience.

2.1.2. Visual programming environments

Visual programming environments are web platforms that enable learners to
create programs graphically. Known as block-based or drag-and-drop
environments, they help students build programming logic without the complex
syntax of programming languages. They bridge the gap between learning syntax
and computational thinking. However, most of these environments are designed
for children, and transitioning to text-based programming can be challenging.
Consequently, researchers pay consideration to this because block-based
environments often lack a meaningful programming experience. Many researchers

Alain Kabo Mbiada, Bassey Isong, at all | 1011

Journal of Information Systems and Informatics
Vol. 6, No. 2, June 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi ¢-ISSN: 2656-4882

concur that students could be attracted by the graphics without comprehending
the underlying meaning they express [22]. Furthermore, visual programming tools
can prove challenging to use when tackling large-scale projects. Kyfonidis et al. [2]
introduced a block-based programming teaching tool designed to simplify learning
C IP courses for beginners. The tool progressively translates visual models into
programming concepts, allowing students to build programs by dragging and
dropping blocks. However, it emphasizes logic over syntax and provides the
option to convert block-based code to C text code, and vice versa. In the same
vein, Jung et al. [3] built an interactive block-based environment to support
program creation using the visual programming language and code generation in
the C programming language. Concurrently, Moussa et al. [4] designed
OOPVisual, an interactive 3D visualization tool, to enhance novice females’
understanding of Object-Oriented Programming (OOP) concepts, particularly
polymorphism. OOPVisual employs the drag-and-drop technique, which
ultimately helps students disregard syntax errors. It incorporates tutorials detailing
the concept of polymorphism, quizzes, and exercises to aid students in practice.

2.1.3. Visualization environments

The visualization environments in this context are also web-based platforms that
enable learners to graphically visualize the various stages of program execution.
The aim is to improve code comprehension, code construction, and understanding
of most core programming concepts. Most of these environments offer some level
of interaction with students and integrate virtual compilers. Thus, Rowe and
Thorburn [5] introduced Visual Instruction for Novices in a C Environment
(VINCE), a Java-based web tool that visually demonstrates the execution of a
correct C program. It enables students to observe or write a C program and
examine its detailed execution. It covers basic programming concepts, pointers,
structs, arrays, function calls, and dynamic memory allocation. Similarly, Hijon-
Neira et al. [6] introduced the Visual Execution Environment (VEE), a tool for
teaching essential Java programming concepts to CS1 students. It uses visual
metaphors to guide Java tasks and provides integrated applications with preloaded
scripts. These scripts offer a variety of scripting practice options for learners
during their courses. Furthermore, Yan et al. [7] created PROgramming
Visualization Tool (PROVIT) for Web, a Java-based e-learning platform for C
programming. PROVIT allows users to write, run, verify, and visualize C
programs. Unlike many self-study tools like VILLE, VINCE, WADEIn, Jeliot,
and VIP, PROVIT is also suitable for lectures. Each of these environments, with
their unique features, significantly improves the programming learning experience.

2.1.4. Educational Environments for Programming

These environments provide a plethora of interactive web-based content and
activities that can be fully leveraged for teaching and learning IP. Some of these

1012 | PyLe: An Interactive Tool for Improving Python Syntax Mastery in Non

Journal of Information Systems and Informatics
Vol. 6, No. 2, June 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi ¢-ISSN: 2656-4882

are extensions to the Moodle platform, a renowned free, open-source learning
management system. The existence of these environments is often justified by the
insufficiency of educational environments for practical programming languages
such as C/C++ and Java. In addition, educators often express a desite to integrate
several types of iterative learning content from a single source, rather than using
multiple types from various sources or servers. Equally, Brusilovsky et al. [§]
developed an architectural framework to unify different intelligent content systems
into one system, leading to the creation of the Python Grids training system. It
operates on servers across two continents, provides a non-mandatory learning
environment for Python, and focuses on basic programming concepts. 1t caters to
diverse student needs, offering a robust and versatile learning experience. Similarly,
Mutiawani and Juwita [9] discussed the creation of an e-learning application
tailored for IP courses that have content with a variety of activities, code practice,
images, sounds, animations, and text. The code practice section uses EditArea, a
free JavaScript editor, to improve code readability through syntax highlighting. On
the same note, Samat et al. [10] investigated the creation and implementation of a
constructivist multimedia learning environment to improve the programming
skills of computer science students. It focuses on learning content, developing
programming skills, and using technology. It also covers both basic and advanced
programming concepts. Evaluations showed its effectiveness for students.
Similarly, Virvou and Sidiropoulos [11] introduced a new e-learning system with
collaborative tools for Python programming instruction. It facilitates group
management, and student interaction and acts as an intelligent tutor, creating a
unique student model based on interactions and recommending lessons tailored
to each student’s profile.

Furthermore, Stupina and Paniotova [12] introduced Chatbox, an interactive tool
used in a blended learning environment for programming education. Chatbox
improves student engagement, supports learning goals, and promotes mobile and
interactive learning. It adapts to the student’s learning needs and style, allows self-
paced learning, and offers feedback. Similarly, Kakeshita and Murata [13] utilized
pgtracer, a fill-in-the-blank tool, as a homework helper in programming classes.
Pgtracer, a Moodle plug-in, helps beginners grasp programming concepts like
loops, functions, and pointers. Students fill in the blanks, and pgtracer visualizes
the step-by-step execution of the program, compares the response to the correct
answer, and automatically grades the student. Pgtracer also has data collection
features. Ferreira et al. [14] also discussed and evaluated SICAS2, a Moodle plug-
in based on constructivist theory. SICAS2 enables students to create programs
with flowcharts and visualize program execution. It is not limited to any specific
programming language and helps students understand basic programming
concepts like read and write, for and while loops, and if and if/else statements.

The discussed studies provide some of the digital tools to improve beginner IP
skills, highlighting the importance of this in CSE. However, their application to

Alain Kabo Mbiada, Bassey Isong, at all | 1013

Journal of Information Systems and Informatics
Vol. 6, No. 2, June 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi ¢-ISSN: 2656-4882

non-computing students is often not explicitly addressed. While these tools
generally bypass syntax issues, an earlier study [21] indicates that syntax remains a
significant challenge for these students [17] while teachers also find it difficult to
adapt these tools to their needs. Moreover, large-scale learning management
systems lack flexibility and dynamic content [23]. This study proposes an
interactive learning environment to improve non-computing students’
understanding of basic programming concepts and syntax, aiming to fill existing
gaps and offer a more customized and effective learning experience.

2.2. Research Method

This section presents the methodology employed in this paper to design,
implement, and evaluate Pyle, an interactive tool aimed at enhancing Python
syntax proficiency among non-computer science students. We follow a structured
approach, incorporating literature review, design, surveys, and experimentation.

1) Literature review: We conducted a comprehensive literature review to
identify existing deficiencies in instructional programming tools as shown
in Section 2.1. This step informed our design process for PyLe.

2) Surveys on non-computing students: Surveys were administered to non-
computing students in two separate universities and results can be found
in [21]. These helped in the understanding of the challenges these students
face in IP courses. The findings from this phase guided the formulation
of PyLe’s requirements.

3) Requirements definition: Based on the outputs from the literature review
and surveys, we outlined the requirements for PyLe. These requirements
served as the foundation for the subsequent design and development
phases.

4) Design and development: We followed the IIAPDIE framework [18],
specifically tailored for educational software design. PyLe was designed
and developed with a focus on addressing the identified deficiencies and
meeting the requirements.

5) Evaluation: To assess PyLe’s effectiveness, we conducted experiments
with non-computer science students from two institutions. The
evaluation metrics included:

a) Time Taken (TT): The duration required to complete a programming
task using PyLe.

b) Solution Quality (Grade): The quality of solutions produced by
students using PyLe.

¢) Sample Size: We randomly selected 70 participants, dividing them
into control and experimental groups.

d) Comparison: We compared the performance (grades) and TT of the
control group with those of the experimental group.

e) Utility assessment: A quantitative survey was administered to control
group participants to gauge the utility of PyLe.

1014 | PyLe: An Interactive Tool for Improving Python Syntax Mastery in Non

Journal of Information Systems and Informatics
Vol. 6, No. 2, June 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi ¢-ISSN: 2656-4882

f) Instructor influence: Interviews were conducted with instructors to
understand the impact of PyLe on their teaching experience.

Thus, PyLe’s design, development, and evaluation were guided by a rigorous
methodology, resulting in an interactive tool that aims to enhance Python syntax
mastery for non-computer students.

3. RESULTS AND DISCUSSION
3.1. The Proposed Interactive Learning Environment

This sub-section presents the proposed interactive learning environment, referred
to as PyLe, which serves as a response to RQ1. PyLe is designed and implemented
following the various stages of the educational software development framework
known as IIADPIE discussed in [18]. IIADPIE is an acronym that stands for the
seven phases of the framework, detailed as follows: Initial; Instructional
orientation; Analysis; Design; Production; Integration &Implementation; and
Evaluation. This framework amalgamates certain practices of agile techniques,
such as Scrum and the dynamic systems development method (DSDM), with
instructional design methods such as ADDIE [24] and ASSURE [25]. ASSURE
and ADDIE is instructional design models that provide a framework for
developing and delivering learning content that utilizes technology. ASSURE is an
acronym that stands for: Analyse learner characteristics; State Objectives, Select,
modify or design materials; Utilise materials; Require learner response; Evaluation.
ADDIE is an acronym that stands for Analyse; Design; Develop; Implement;
Evaluate. PyLe is grounded in the principles of cognitivism, which emphasizes the
development of the learner’s memory. The primary objective of PyLe is to assist
students in acquiting a thorough understanding of the syntax of basic
programming concepts in Python. Thus, our main focus is on syntax
comprehension, as it is intended to facilitate the learning process and enhance the
students’ programming skills. The processes involved are discussed as follows:

1) Design Goals

PyLe aims to provide a comprehensive set of learning materials and a robust
software infrastructure to support courses covering the fundamental concepts of
Python programming. It empowers teachers to select from available and relevant
materials to incorporate into their courses, making the content dynamic and
organized into modules. These modules, managed by instructors, are further
organized into a series of lessons. Each lesson comprises a set of sections or parts
and includes resources and activities. These resources and activities are presented
straightforwardly to enhance learning effectiveness. Moreover, activities are
specifically designed to engage and motivate students, while teachers can assign
homework to assess the quality of student learning. Thus, PyLe materials meet the
following specifications and features:

Alain Kabo Mbiada, Bassey Isong, at all | 1015

Journal of Information Systems and Informatics
Vol. 6, No. 2, June 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi ¢-ISSN: 2656-4882

a) Platform independence - can be accessed from various platforms and
devices.

b) Non-proprietary format - materials are not restricted to a specific
proprietary format.

¢) Scalability and reusability - modules can be scaled and reused as needed.

d) Dynamic content - content is not static and can adapt to different learning
scenarios.

e) Interactive Simulation - facilitates in-depth understanding,

f) Interactive and automated feedback evaluation activities - activities
provide instant feedback to students.

@) Storage of student exercise attempts and grades - allows tracking of
students’ progress.

h) Learner’s profile building - PyLe tracks students’ progress and builds
learner’s profiles.

1) Feedback mechanism - provides the instructor with the ability to give
feedback to students and vice versa.

j) Student progress management and display - individual student reports and
progress are managed and displayed.

k) Time-bound lessons - lessons must be completed within a given
timeframe, otherwise, students will not be able to move on to the activities
section of the lesson.

These features collectively make PyLe a comprehensive and effective learning
environment for Python programming.

2) PyLe Infrastructure

PyLe is a web application that operates on a client-server architecture implemented
using the PHP Codelgniter Framework, with a MySQL database serving as the
data storage medium. Additionally, PyLe employs the Model View Controller
design pattern, which separates the application logic into three interconnected
components, enhancing its manageability and scalability. The overall behaviour of
the system, as depicted in Figure 1, is governed by the interactions of different
users. Each client request is processed through the application programming
interface (API). The system initially verifies the authenticity of the user, following
which it directs the processing of the request to the system core. Depending on
the nature of the user’s request, the system kernel routes it to the appropriate
module. This module then processes the request and generates the corresponding
response. This response can sometimes necessitate access to the database or an
external service. While the system predominantly uses the API for most requests,
when a user is logged into their administration panel, they are granted a session.
This session permits them to access certain modules directly for the duration of
the session. This architecture ensures a secure, efficient, and user-friendly
interaction with the PyLe environment. The components of the PyLe architecture
as shown in Figure 1 are as follows:

1016 | PyLe: An Interactive Tool for Improving Python Syntax Mastery in Non

Journal of Information Systems and Informatics
Vol. 6, No. 2, June 2024

p-ISSN: 2656-5935 http://journal-isi.otg/index.php /isi e-ISSN: 2656-4882

a)

b)

d)
9

Administrative tools: This provides teachers and learners with essential
workspace management functions, allowing them to interact with the system.
For instance:

* Module management: Teachers can create courses from scratch or
use pre-existing modules. The default course module is already
available in the environment.

= Lesson updates: Teachers can add and update lessons, incorporating
various resources and activities.

= Assignments: Teachers can add, update, grade, and export assignment
grades. Learners can complete assignments and view their grades.

= Personalization: Learners can update profile information, including
learning style, colour preferences, and prior programming experience.

Client layer: This enables users (teachers and learners) to access PyLe via any
mobile device or computer.

PyLe server: At the core of the system, this handles security, authentication,
authorization, routing, and interaction with other system elements. It
constructs different learner profiles based on their interactions with the
system.

Database: This organizes data storage within the database.

Third-party: The content delivery or distribution network (CDN) facilitates
rapid resource transfer for loading internet content. It includes HTML pages,
JavaScript files, style sheets, images, and videos. In Pyle, we utilize
Bootstrap, jQuery, and the TINYMCE editor.

Administrative Tools
Management

(Modules, Courses, Personnalisation
Resources, Activities, —) (Personnal information,
Assignments, Marking, background, Learning
Students, Statistics, Media, preferences, eic.)
Feedback)

Client Layer
(e =

Application | '
E——

[Client
Application 2

Client
‘ Application || S—

Figure 1. PyLe Architecture

Alain Kabo Mbiada, Bassey Isong, at all | 1017

Journal of Information Systems and Informatics
Vol. 6, No. 2, June 2024

p-ISSN: 2656-5935

http://journal-isi.org/index.php/isi

Table 1. Student Profile in PyLe

e-ISSN: 2656-4882

Categories Elements Type/Values Use
Nom String Identification
Gender String Identification
Age Scale Identification
Country String Identification
School/University String Identification
ndergraduate,
Undergrad
Study level PostGraduate, Pupils, Identification
Personnal Other,}
Information Prior programming (Yes, No} Initialization
experiences
Prior mathematies (v o\ Initialization
expetiences
Prior English {Yes, No} Initialization
experiences
UserName/ . . .
Password/ Email String Identification
{Slow/Fast working Imgahzanon (Time
. . assigned to each
Cognitive capacity memorty, Poor/Good 1 ioh
memory petson} gsson might
’ depend)
. {Visual, Auditory and Inmghzanon;
Learning styles . . Choice of content
Reading/Writing} -
type and activities
{Acquire skills, Train for Imtlghzanon;
. . Choice of
Learning goals Exams, Obtain a good concents and
Learnet's Grade, other,} P
examples
Features
Inference of
Self-confidence level ~ {High, Medium, Low} learner's
understanding
Check if the desire
. is in adequation of
+ . . .
Grade expectation {A, B, C, A+, etc.} the fime dedicated
to learning
Learner color Personalization of
{Set of defined colors} the learner's
preference .
environment
State of {Acqmred, To be Acquired, o
. To be revised, Not to be Statistics
. Section/lesson
Learning suggested}
states State of the {Acqulred, To be Acquired, o
. To be revised, Not to be Statistics
Activities
suggested}
i;l;nber of lessons Number Statistics
Interaction ..
Number of activities .
between Number Statistics
learner and done
system State of the Lesson {Completed, Not Statistics
completed}
Last connexion datetime Statistics

1018 | PyLe: An Interactive Tool for Improving Python Syntax Mastery in Non

Journal of Information Systems and Informatics
Vol. 6, No. 2, June 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi ¢-ISSN: 2656-4882

{Not Understood, Not well
understood, Well Statistics
understood, All understood }

Understanding of
the activity

Duration of the

. In minute Statistics
connexion

3) Student profile in PyLe

In PylLe, profiles are constructed by amalgamating the following norms: PAPI,
IMS LIP, and IMS RDECEO [18]. Leatners' profiles are created based on the
interactions of the students with the system, as shown in Table 1. In essence, each
student can have multiple profiles within the system. These diverse profiles are
utilized to compile the student’s progress report. This approach ensures a
comprehensive understanding of each student’s learning journey, facilitating
personalized instruction and feedback.

4) Resources in PyLe

The current version of PyLe encompasses nine (9) lessons, as detailed in Table 2.
The resources provided by PyLe place a strong emphasis on the syntax of the
fundamental concepts of the Python programming language. These resources
utilize a variety of mediums, including text, code, images, sound, video, and
visualization. This multi-modal approach caters to diverse learning styles, thereby
enhancing the learning experience.

Table 2. A suggestion for the order of PyLe's lessons

Lesson Description Number of activities
Lesson 1 Output function 09
Lesson 2 Some Basic Programming 09
Notions
Lesson 3 Variables 14
Lesson 4 Simple Data types 04
Lesson 5 Input Function 09
Lesson 6 List 37
Lesson 7 Conditionals 09
Lesson 8 Loops 15
Lesson 9 Functions 10

The code type resource in PyLe provides the instructor with the flexibility to add
or modify a piece of code in the section. To alleviate students’ frustration and
enhance their debugging skills, the lessons incorporate, wherever feasible, the
most common mistakes or misconceptions made by novices. These
misconceptions, sourced from the literature, are accompanied by the
corresponding compiler’s error message, providing students with practical insights
into error handling. Furthermore, the lessons include visualizations designed to
bolster students’ understanding of programming concepts. A distinctive feature of
PyLe visualizations, as shown in Figure 3 is the ability for students to provide the

Alain Kabo Mbiada, Bassey Isong, at all | 1019

Journal of Information Systems and Informatics

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi

Vol. 6, No. 2, June 2024

e-ISSN: 2656-4882

input data before execution. This feature contrasts with most existing
visualizations, where the user cannot modify the input data, thereby offering a
more interactive and engaging learning experience. The significant challenge in
developing the content was to avoid problems based on mathematics, which are
prevalent in traditional teaching method and most learning environments. This
approach ensures that the focus remains on understanding programming concepts

rather than mathematical problem-solving.

LESSON 8: PHYTONS LOOPS

Preradquisites: piet]): inpus() met ables: compurisor logical operatos; st f sate
Objectives: Defie the for and wh Define somme cemmen er
Taaching Mathod s): DTM, annotated examples, visualization, Low level spproach

RESOURCES Time elapsed :0:14 NuB:Itis only by dlicking on the button NEXT that the saction i considered read,
FOR LOOP

range () function syntax
start, stop, step

Examples of use

Progression

Lesson Content

Section 1: Presentationv’

Saction 2 : For loop

Section 3 Looping through a List

and String
Section 4 : Imbrication of for
Section 5 : While loop

Section 6 Continue and break into
loops statement

Section 7: Loop visualization

Figure 2. PyLe lesson overview

For ease of understanding, enter the children's names in the field bellow, separating them witha ","

on the next button to see the program run.

Code to execute

2 1 children =
2 ages=
3 for child in children
4 for age in ages:
5 print{child, age)

Children Ages ‘

Do the same with the Age field. Then click

Figure 3. Sample of interactive visualization

1020 | PyLe: An Interactive Tool for Improving Python Syntax Mastery in Non

Journal of Information Systems and Informatics
Vol. 6, No. 2, June 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi ¢-ISSN: 2656-4882

5) Activities in PyLe

PyLe activities encompass a broad range of exercises designed to verify whether
the student has comprehended the lessons and can consequently identify and
correct syntax errors. Most of the activities are based on misunderstandings of
programming students discovered in the literature and previously covered in the
course content. These activities, as shown in Figure 4, are categorized into the
following types:

a) Concepts inventories: These are a series of quizzes based on students’
misconceptions that can help the instructor determine whether or not
students have mastered a concept [18].

b) Pearson problems: Unlike most Pearson problems that use the drag-and-
drop system, the Pearson problem in PyLe requires students to type their
answers in the correct order. This ensures that students can enter the
corresponding answer without making syntax errors.

¢) Matching questions: These use the drag-and-drop mechanism to test the
students’ understanding.

d) Fill-in-the-Blank Questions.

Moreover, the study has resulted in a series of activities for all these categories,
ready to be used for the aforementioned concepts in Python. These diverse and
interactive activities aim to reinforce learning and enhance the student’s
understanding of Python programming syntax.

ACTIVITIES - LESSON 7: IF STATEMENT

QUIZ PEARSON FILL IN THE BLANKS Time elapsed : 0:44 Quiz

Question 2 Pearson

Fill in the blanks

choose the correct output of the code above:

The car slows down or moves

Figure 4. Overview of activities

Alain Kabo Mbiada, Bassey Isong, at all | 1021

Journal of Information Systems and Informatics
Vol. 6, No. 2, June 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi ¢-ISSN: 2656-4882

As discussed above, PyLe is an educational environment that incorporates
students’ misconceptions to enhance motivation and performance. It focuses on
improving students’ Python programming syntax and offers user-friendly content
on Python basics. It is suitable for use in both blended and online learning settings
for an IP course or self-directed learning. Its rationale stems from the fact that
most lecturers struggle to integrate programming syntax into teaching, and current
research often overlooks syntax issues and their relevance to non-computer
science students. PyLe addresses these concerns by considering students’
misunderstandings and introducing features for module reuse and content
updates. Unlike other existing tools and given the target population and challenges
discussed in [18], its content is based on real-life situations, not just mathematical
skills, making it unique in its objective and development process.

3.2. Evaluations

This sub-section presents the evaluation of the proposed PyLe to establish its
effectiveness in enhancing the programming skills of non-computing students.
The assessments carried out in this section serve to address RQ2 and RQ3. This
aligns with the final phase of the IIADPIE framework [18], which was employed
to construct the proposed learning environment. An overview of the strategy
implemented in this evaluation is presented in Figure 5 The strategy ensures a
thorough understanding of the effectiveness and usability of the proposed PyLe.

. Intervention
Participants Evaluations
First-Year students and a teacher, Teaching and Learning while using PyLe
FNAS, NWU Mafikeng
South Africa Teaching and Learning without PyLe

Post-test on Questionnaires
Programming to the Teachers
concepts in Experiment Interviews
Python Groups

40
minutes

First-year teacher trainees and a Teaching and Learning while using PyLe
teacher, HTTC

Cameroon Teaching and Learning without PyLe

Figure 5. Evaluation workflow
1) PyLe’s effectiveness
To evaluate the effectiveness of PyLe, this study conducted an experiment to
address RQ2. It aims to verify whether the TT to solve a problem has an impact
on the grade or quality of the solution and whether using PyLe is more effective

in learning program syntax than not using PylLe.

Participants: The study involved non-computing students, including first-year
trainee teachers from the Higher Teacher Training College (HTTC) in Cameroon

1022 | PyLe: An Interactive Tool for Improving Python Syntax Mastery in Non

Journal of Information Systems and Informatics
Vol. 6, No. 2, June 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi ¢-ISSN: 2656-4882

and first-year students from the Faculty of Natural and Agricultural Sciences
(FNAS) in South Africa. At both institutions, control and experimental groups
were formed, with 15 students at HT'TC and 20 students at FNAS. All 70 students
were enrolled in introductory Python programming courses, with those in
Cameroon studying in the second semester of 2023-24 and those in South Africa
in the first semester of 2024. The course at FNAS is part of the CMPG111 module,
while at HTTC, it serves as preparation for the INFO2122 unit on OOP with
Python.

Experiment and task description: The experimental group at HTTC used the PyLe
environment in a blended learning setup, and the students engaged with the
content and activities across nine lessons. The in-person sessions we employed
allowed the instructor to address student concerns and provide additional
explanations. Also, a WhatsApp group was established for ongoing support and
engagement. Meanwhile, the FINAS experimental group (EG) used PyLe in a fully
online setting, with a similar WhatsApp group for support. The focus of the
experiment was on conditional statements and loops. The control groups (CG) at
both universities underwent traditional courses on the same concepts. In addition,
conditionals and loops were the programming concepts implemented during the
experiment. Concurrently, CGs from both universities took traditional courses on
the same programming concepts. The investigation was to determine the potential
effect of TT to complete a task on the final GRADE achieved. In particular, the
GRADE is related to the quality of the final product submitted by the students
after a specific time TT spent. Also, the tasks given to the students included
quizzes and problems identifying and correcting syntax errors in given programs.
The quizzes aimed to enable students to predict the result of executing a given
program, containing or not syntax errors, by choosing the correct answer from
several propositions.

Measuring instruments and variables: There were no pre-tests conducted on the groups.
The experiments used post-tests to assess students’ ability to learn and grasp
program syntax in Python. Hence, two variables, students’ GRADE (0-100%) and
TT for a 40-minutes test were collected. Thus, the GRADE is a dependent variable
while TT is the independent variable. In addition, the EG participants were coded
as EO1 to EO015 for HTTC and E101 to E120 for the FNAS while the CG
participants were coded as C01 to C015 for HTTC and C101 to C120 for FNAS.

Hypotheses formulation: The null hypotheses tested in these experiments aim to gauge
the significance of adopting the PyLe environment as a crucial learning material
for improving students’ ability to learn and master program syntax in the
introductory Python programming courses. The specific hypotheses are outlined
as follows:

Alain Kabo Mbiada, Bassey Isong, at all | 1023

Journal of Information Systems and Informatics
Vol. 6, No. 2, June 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi ¢-ISSN: 2656-4882

Hoq: The ability to learn and master program syntax in Python is the same for both EG and
CG in terms of grade.
Hor: WGRADEEG = HGRADECG

Hoz: The time spent performing on PyLe is the same for both EG and CG.
Hog: prrrec = prrec

Additionally, based on the test, the Hy; and Hoz will be rejected if their respective
p-values p < 0.05.

Statistical technignes: The selection of statistical techniques is contingent upon the
distribution of the variables in question. Given the sample size of over 50
participants, we conducted the Kolmogorov-Smirnov test on the GRADE and TT
variables to test the normality of the data. The results indicated that both GRADE
and TT were not normally distributed, as their p-values were less than 0.05.
Consequently, we used the independent-sample Mann-Whitney U-test to test
hypotheses Hor and Hoz. Moreover, we carried out Pearson's correlation test to
check whether there was a relationship between TT and GRADE.

3.3 Results and analysis

This subsection presents the results of the evaluation. As presented in Figure 6
and Figure 7, the participants’ grades, reflecting their ability to learn and master
problem syntax in Python, are highly satisfactory for the experimental groups
(EGs), with the top score reaching 100%. Furthermore, the analysis of means and
standard deviations reveals that EGs generally surpass CGs in terms of grades.
Specifically, EGs mean grade is 61.5%, as shown in Table 3, which is significantly
higher than CGs mean grade of 37%. Conversely, when it comes to the average
time spent on the test, CGs slightly exceed EGs, with a percentage of 23.6%
compared to EGs at 21.6%.

=4=—GRADE =—@—TT

120
100
80
60
40
20

1024 | PyLe: An Interactive Tool for Improving Python Syntax Mastery in Non

Journal of Information Systems and Informatics
Vol. 6, No. 2, June 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi ¢-ISSN: 2656-4882

Table 3. Descriptive analysis of Grade and TU.

Mean SD
Experimental Group GRADE 01.53 19.59
Time Taken (TT) 21.63 6.41
Control Group GRADE 37.03 19.31
Time Taken (TT) 23.34 6.79

120
100
80

60

40
. M[\N

UJ-L]U-!-L]U-!-L]U—!-L]U—!EEE'—;—EEEEEV

GRADE TT

Figure 7. Post-test results for South Africa

In addition, to further determine the significance of the above results, we tested
the formulated hypotheses using the independent-samples Mann Whitney U-test
as shown in Figure 8, and Figure 9. The findings indicate that the p-value for the
paired variable GRADEcG - GRADEgg is 0.000, which is less than 0.05. This leads
to the rejection of the Hoi. Consequently, the alternative hypothesis that
GRADEcg is superior to GRADErg is accepted, given that the mean uGRADEgg
= 61.53 significantly exceeds the mean pGRADEcg= 37.03. Moreover, the p-
value for the paired variables TTcg - TTkc is 0.361, which is greater than 0.05.
This implies that the Ho cannot be rejected. Therefore, we can conclude that the
difference between uTTkc and uTTkc is not statistically significant due to several
factors that guide the experiment. As a result, the variance in the average time
students take to complete the test between the two groups is not significant.
Furthermore, a Pearson’s correlation test was conducted, revealing that the p-value
for the variables GRADEgG and TTrgg is 0.191, and for the variables GRADEcg
and TTcc is 0.233, both of which are greater than 0.05. This suggests that the
student’s grades are not dependent on the time taken to complete the test for
participants in either group.

Alain Kabo Mbiada, Bassey Isong, at all | 1025

Journal of Information Systems and Informatics
Vol. 6, No. 2, June 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi ¢-ISSN: 2656-4882

In light of these findings, while the use of PylLe did not consistently lead to
students completing exams more quickly, it did significantly enhance their ability
to learn and master Python’s syntax. This is a reasonable outcome, considering
that most of the students have not previously taken exams designed to identify
and correct syntactic errors.

GROUP
CONTROL EXPERIMENTAL
1504 H50
N=135 N=135
Mean Rank= 24 57 Mean Rank=46.43
100- 1100
E 4]
3 o 50 E
Q m

| | | | I | | | | I | | |
120 100 80 60 40 20 00 20 40 60 80 100 120

Frequency Frequency

Figure 8. Independent-samples Mann-Whitney U Test on GRADE

GROUP
CONTROL EXPERIMENTAL
50 N=135 N=135 50
Mean Rank=37.71 Mean Rank=33.29

40 40
Z 3] -
: 30 EL |;
k20 -0 2

10 -0

0] 0

]
100 80 60 40 20 00 20 40 6.0 80 100

Frequency Frequency

Figure 9. Independent-samples Mann-Whitney U Test on TT

1026 | PyLe: An Interactive Tool for Improving Python Syntax Mastery in Non

Journal of Information Systems and Informatics
Vol. 6, No. 2, June 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi ¢-ISSN: 2656-4882

1) PyLe's usability assessment and instructional effect

This subsection presents PyLe usability evaluation and its instructional effect on
the parts of the instructors. We employed post-experiment procedures that
adhered to the quantitative design technique to address RQ3. The study
participants are all CG students discussed above, totalling 35 students. In this case,
we designed and distributed questionnaires after the experiment about the usability
of the PyLe environment based on several usability assessment criteria. The
questionnaire, adapted from the one referenced in [20], consists of six sections
with a total of 23 questions. The participants were asked to respond based on an
ordinal scale with values ranging from Strongly Disagree (1) to Strongly Agree (5).
The questionnaires were administered to the students, and the data was
subsequently collected and analyzed using descriptive statistics in SPSS software.
Moteover, before data collection from NWU teachers and students, an ethics
certificate was obtained from the FNAS ethics committee. To ensure or affirm the
reliability and validity of the results, the Cronbach’s alpha value obtained was 0.80,
indicating a high degree of internal consistency in the questionnaire responses.

The usability of PyLe for students was assessed across several categories or criteria,
such as visual design, navigation, accessibility, interactivity, self-assessment and
learnability, and motivation to learn. The findings are detailed in Table 4. Findings
analysis shows that students strongly endorse PyLe’s navigation, interactivity, self-
assessment, and learnability features. However, they concur that PyLe enhances
their motivation to learn and that its visual design and accessibility are satisfactory.
Moreover, most student responses are concentrated around the corresponding
means. Despite the acceptable responses, there is room for Pyle to enhance its
accessibility. Particularly, the question regarding whether PyLe has any technical
issues frequently receives a score of 2, which corresponds to ‘Disagree’ on the
Likert scale. This suggests a need to address potential technical issues in PyLe to
improve the overall user experience.

Table 4. Descriptive analysis result of PyLe’s Usability

Criteria Mean Median Mode Std.
Deviation
Visual Design 4.11 4 4 0.79
Text, images, and visualization are easy to 391 4 5 112
understand
Fonts (style, colour, etc.) are easy to read 4.03 4 4 0.86
Relevant information is placed in areas 3.04 4 4 0.91

that catch your attention.
Navigation 4.60 5 5 0.49

You can decide which sections of the
lesson you want to view

429 4 4 0.71

Lesson content is only a few clicks away 4.26 4 4 0.78

Alain Kabo Mbiada, Bassey Isong, at all | 1027

Journal of Information Systems and Informatics
Vol. 6, No. 2, June 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi ¢-ISSN: 2656-4882
Criteria Mean Median Mode S.td..
Deviation
You can track your progress on PyLe 4.34 5 5 0.90
The menus for accessing content are 417 4 4 0.82
organized
Accessibility 3.85 4 4 0.80
PyLe pages 'fmd f)ther clements were 406 4 4 0.80
casily accessible in a reasonable time
PyLe is easy to access from any platform 3.66 4 5 1.18
PyLe has no technical problems 3.17 3 2 1.24
Interactivity 4.40 5 0.73
PyLe offers faclhtleg to make th‘e lea}rnlng 420 4 4 0.75
process more engaging and motivating
PyLe provides access to a set Qf 431 4 4 0.67
resources adapted to the learning context
PyLe engages learners in tasks that are
closely linked to learning goals and 4.20 4 4 0.90
objectives
Self-Assessment and Learnability 4.57 5 5 0.55
You can predict the overall result of
clicking on each button or link 377 4 4 091
Ygu can eas‘ﬂy understgnd the purpose of 446 4 4 0.56
using PyLe in the learning process
Each lesson offers you a set of activities
to check your level of understanding 49 > > 0-70
Several types of activities are offered in 451 5 5 0.50
Pyle
PyLe activities prepare you to avoid a 4.49 5 5 0.85

range of syntax errors
Motivation to learn 4.14 4 4 0.84

You've found the content very useful for

understanding and avoiding syntax errors 4.20 4 4 0.86
PyLe's lessons encourage you to deepen 426 4 4 078
your knowledge

‘You fognd PyLe's content enjoyable and 403 A 5 o7
interesting

PyLe content provides lessons that 3.40 : 4 Loo

match your life experience

PyLe content provides frequent and

various learning activities that set you up 417 4 4 0.89
for success

Moreover, still, in response to RQ3, we also conducted post-experimental
interviews with the two teachers responsible for the modules. This was aimed at
providing feedback on PyLe’s content, its utility, and their willingness to
incorporate it into their teaching materials. The analysis of their responses revealed
that the content was found to be factual, current, and comprehensive. The system
layout was intuitive and easy to navigate, with real-world examples. The tools were

1028 | PyLe: An Interactive Tool for Improving Python Syntax Mastery in Non

Journal of Information Systems and Informatics
Vol. 6, No. 2, June 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi ¢-ISSN: 2656-4882

deemed superior to comparable ones, with appreciated features like student
progress tracking, content adaptability, relevant objectives, and logical task
sequencing. The tool aligned with their ethical standards and values, and the
content was consistent with the curriculum. Following the experiments, additional
students were enrolled in PyLe, confirming its seamless integration into teaching
and learning practices. However, suggestions for improvements included more
visualizations, inclusion of other Python concepts, and expansion to other
programming languages like C, C++, and Java.

2) Validity Threats

To ensure the veracity of the results presented above, we have implemented
various measures. We carefully recorded the reactions of PyLe users, and only
those students who actively engaged with the environment by reading information
and participating in activities were included in the post-test and the subsequent
questionnaire. Moreover, the teachers who were interviewed were exclusively
those who participated in the trials. The post-test questions were carefully curated
to only include subjects that were studied using the Pyle environment. To
accurately estimate the consent of participants and prevent measurement bias, the
responses to the questionnaire were evaluated on a 5-point Likert scale.
Furthermore, to ensure the quality of the data, a reliability test was conducted using
the data obtained from the students’ usability survey. It is important to note that
every participant completed the questionnaire and took part in the post-test. The
analysis of these results has bolstered our confidence in the accuracy of the
previously reported findings. Consequently, we are confident in the quality of the
outcomes presented above.

3.4 Discussion And Comparison

In this paper, we have designed, implemented, and evaluated a novel learning
environment for programming in Python called PyLe. PyLe is an educational
environment designed for introducing Python programming, grounded in the
ITADPIE framework. This framework integrates pedagogical and agile approaches
to structuring and managing educational software design [18]. PyLe is specifically
designed for non-computing students, focusing on syntactic issues in Python. It
offers easily digestible content on the fundamentals of Python programming. In
blended or online learning settings, instructors can employ PyLe for Python
courses, while students can use it for self-directed learning and assessment. Unlike
most existing tools [2]—[14], PyLe incorporates students’ misconceptions into its
content development to alleviate widespread frustration during coding. Moreover,
the key features of PyLe include module reuse across different classes and the
ability for teachers to update existing content, aspects that are often overlooked in
other tools. In addition, PyLe stands out due to its specific objectives and

Alain Kabo Mbiada, Bassey Isong, at all | 1029

Journal of Information Systems and Informatics
Vol. 6, No. 2, June 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi ¢-ISSN: 2656-4882

development process, which prioritize real-life scenarios, contrasting with tools
that are primarily tailored to mathematically skilled students. Table 5 provides
important details on the differences between PylLe and some existing tools.

Furthermore, PyLe underwent implementation and assessment on two modules
across Cameroon and South Africa to determine its effectiveness in teaching and
learning. The post-experimental evaluations conducted revealed that students who
used PyLe outperformed their peers in assessing their ability to learn and solve
syntactic programming problems. Interestingly, the TT by students to complete
the task given did not significantly impact their final scores (Grade). This suggests
that PyLe’s unique assessment design effectively helps students learn, master,
identify, and correct Python syntax. Furthermore, post-experiment surveys
indicated high usability for PyLe. Most lessons were fully read, and participants
completed the activities as shown in Figure 10 and Figure 11. In addition, an
analysis of interviews with teachers confirmed their positive perception of PyLe,
leading to its incorporation into their teaching practices.

Pyle [— SSp—
Fast working memory * B+
B Learning Styla @ Loaming Goals 0 Salf-Confidence Level
» Reading/riing s fr exam igh
o Continue to learm to improve your capaciry ? [[TERSEAY [T
” pe
s progeess i Miding Pearson
SRR iundestosd Wall Undentood Mot 1o ba suggested
: oy ORI an Undesiood Not done Not g
-
3 Legon 3: Varisbles GEEEER o Wed Undersiood Not Understood Not done Not dane Not Well Unde:
Figure 10. Overview of a Student Progress Report
PyLe

Quiz progression

Pearson progression

o Matching progression Blank space progression

° “

Figure 11. Student’s activities report

1030 | PyLe: An Interactive Tool for Improving Python Syntax Mastery in Non

p-ISSN: 2656-5935

Journal of Information Systems and Informatics
Vol. 6, No. 2, June 2024

http://journal-isi.org/index.php/isi ¢-ISSN: 2656-4882

Table 5. Theoretical comparison of PyLe with some existing learning
programming environments

Learning Education Target Adms .a nd Nature of the Content and
R learning
Tools theory population Other Features
context
Resources (text, images, video,
. dynamic visualization,
Learning and
understandin annotated examples, etc.), and
of activities that can be updated
Non. gm Ammin by the teacher. Based on the
. progr IIADPIE framework [18] and
PyLe Cognitivism computer g syntax. .
students Use in Python programming laqguage.
blended and Includes output, comparison
e learning operators, logic operators,
© simple data types, input, lists,
contexts. . .
vatiables if statements, loops,
and functions.
Code
comprehensi
on,
Practice construction, Focus on Python programming
G-nds N/A N/A and non- language. It includes Vanab-les,
training mandatory if statements, loops, and logical
system [8] practice. Can operators.
be used in
blended
situations.
Mulum§d1 Computer Code Defined its developm‘ent de§1gn
a Learning method in four main points.
. Constructivist education comprehensi .
Environm Includes basic and advanced
students on .
ent [9] programming concepts.
Constructi
. Support
vist
multimedi student
. Constructivist N/A interaction No content.
a learning
: and group
environme .
formation
nt [10]
Facilitate A development design method
self-paced based on 10 principles for PHP
Chatbox learning and and others not mentioned.
[12] N/A N/A can be used Includes variable and data
in a blended types, conditionals, loops,
context. arrays, strings, and functions.
Moodle
plugin for
Code
Potracer S)(I)lmﬁrlihzrjé Focus on C programming
g[1 3]C N/A N/A as s . language and includes loops,
homework functions and pointers.
aid in
programmin
g.

Alain Kabo Mbiada, Bassey Isong, at all | 1031

Journal of Information Systems and Informatics
Vol. 6, No. 2, June 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi ¢-ISSN: 2656-4882
Learning Education Target ?;r;i;?d Nature of the Content and
Tools theory population g Other Features
context
Moodle
SICA2 It:)}l:elgm for Programming concepts
Constructivist N/A . included wvariables and basic
[14] construction
control structures.
of program
flowcharts.

4. CONCLUSION

This paper presented PyLe, a novel tool designed to help non-computing students
in mastering Python syntax. PyLe’s significance lies in its focus on improving
syntax error detection and correction skills, an area often overlooked by existing
programming learning tools. Our PyLe, designed using the IIAPDIE framework
and cognitivism principles, offers dynamic resources and activities. It can be
utilized for self-learning or in blended and online educational settings, providing
various features beneficial for educators. The effectiveness of PyLe was evaluated
through post-test studies involving first-year students from NWU, South Africa,
and the HTTC, University of Yaoundé I, Cameroon. The students were divided
into control and experimental groups. The results obtained show that the control
group who used PyLe in their tasks, outperformed the experimental group with a
mean score of 61.53 in the learning and mastery of Python syntax. Furthermore,
PyLe’s usability and instructional impacts were assessed using questionnaires for
the control group and interviews with the module instructors. The feedback
indicated that students found several aspects of PyLe’s usability effective, and
teachers deemed PyLe a useful and acceptable teaching tool. This underscores the
need to integrate PyLe into teaching and learning to help non-computing students
grasp and master the syntax of programming more effectively. However, it was
observed that PyLe did not significantly reduce the time students spend on coding
tasks. This is an area we aim to improve in future iterations of the tool. Our future
work will focus on enriching PyLe’s content and creating more visualizations to
enhance the learning experience. We also plan to extend PyLe’s capabilities to
other programming languages such as C and C++, thereby broadening its scope
and utility. These aim to further boost PyLe’s effectiveness as a learning tool for
non-computing students.

REFERENCES
[1] S. Grover, ‘Designing an assessment for introductory programming

concepts in middle school computer science’, in Proceedings of the 515t ACM
Technical Symposinm on Computer Science Education, 2020, pp. 678—684.

1032 | PyLe: An Interactive Tool for Improving Python Syntax Mastery in Non

Journal of Information Systems and Informatics
Vol. 6, No. 2, June 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi ¢-ISSN: 2656-4882

2]

C. Kyfonidis, N. Moumoutzis, and S. Christodoulakis, ‘Block-C: A block-
based programming teaching tool to facilitate introductory C programming
courses’, in 2017 IEEE Global Engineering Education Conference (EDUCON),
IEEE, 2017, pp. 570-579.

I. Jung, J. Choi, I.-]. Kim, and C. Choi, ‘Interactive learning environment
for practical programming language based on web service’, in 2016 15)
International Conference on Information Technology Based Higher Edncation and
Training ITHET), IEEE, 2016, pp. 1-7.

W. E. Moussa, R. M. Almalki, M. A. Alamoudji, and A. Allinjawi, ‘Proposing
a 3d interactive visualization tool for learning OOP concepts’, in 2076 13th
Learning and Technology Conference (L&T), IEEE, 2016, pp. 1-7.

G. Rowe and G. Thorburn, ‘VINCE—An on-line tutorial tool for teaching
introductory programming’, Br. J. Educ. Technol., vol. 31, no. 4, pp. 359-369,
2000.

R. Hijon-Neira, C. Pizarro, J. French, P. Paredes-Barragan, and M. Duignan,
‘Improving CS1 Programming Learning with Visual Execution
Environments’, Information, vol. 14, no. 10, p. 579, 2023.

Y. Yan, H. Nakano, K. Hara, T. Kazuma, and A. He, ‘A Web Service for C
Programming Learning and Teaching’, in 2076 10th International Conference on
Complex, Intelligent, and Software Intensive Systems (CISIS), IEEE, 2016, pp.
414-419.

P. Brusilovsky, L. Malmi, R. Hosseini, J. Guerra, T. Sirkid, and K. Pollari-
Malmi, ‘An integrated practice system for learning programming in Python:
design and evaluation’, Res. Pract. Technol. Enbanc. Learn., vol. 13, pp. 1-40,
2018.

V. Mutiawani and others, ‘Developing e-learning application specifically
designed for learning introductory programming’, in 2074 International
Conference on Information Technology Systems and Innovation (ICITSI), IEEE,
2014, pp. 126-129.

C. Samat, S. Chaijaroen, I. Kanjug, and P. Vongtathum, ‘Design and
development of constructivist multimedia learning environment enhancing
skills in computer programming’, in 2077 6#h ILAI International Congress on
Advanced Applied Informatics (ILAI-AAI), IEEE, 2017, pp. 1023-1026.

M. Virvou and S. C. Sidiropoulos, ‘Collaborative tools in learning a
programming language’, in 2072 International Conference on E-Learning and E-
Technologies in Education ICEEE), IEEE, 2012, pp. 162-165.

M. Stupina and V. Paniotova, ‘An Educational Chatbot in a Blended
Learning Environment’, in 2023 3rd International Conference on Technology
Enbanced Learning in Higher Education (IELE), IEEE, 2023, pp. 276-279.

T. Kakeshita and M. Murata, ‘Application of programming education
support tool pgtracer for homework assignment’, In. |. Learn. Technol. Learn.
Ewnviron., vol. 1, no. 1, pp. 41-60, 2018.

Alain Kabo Mbiada, Bassey Isong, at all | 1033

Journal of Information Systems and Informatics
Vol. 6, No. 2, June 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi ¢-ISSN: 2656-4882

[14]

[15]

(22]

(23]

[24]
[25]

[26]

A. Ferreira, A. Gomes, and A. J. Mendes, ‘SICAS2: Interactive Tool to
Support Programming Learning’, in 2022 International Symposium on
Computers in Edncation (SIIE), IEEE, 2022, pp. 1-5.

S. B. Yusupova, O. R. Sultanov, R. S. Baltayev, and F. A. Bekchanov, ‘The
advantage of using e-learning in teaching students programming languages’,
in 2022 IEEE International Multi-Conference on Engineering, Computer and
Information Sciences (SIBIRCON), IEEE, 2022, pp. 1910-1913.

J. Figueiredo and F. Garcfa-Pefialvo, “Teaching and learning tools for
introductory programming in university courses’, in 2021 International
Symposinm on Computers in Edncation (SIIE), IEEE, 2021, pp. 1-6.

M. A. Sana’a, T. A. Dousay, and C. L. Jeffery, ‘Integrated learning
development environment for learning and teaching C/C++ language to
novice programmers’, in 2020 IEEE Frontiers in Education Conference (FIE),
IEEE, 2020, pp. 1-5.

A. K. Mbiada, B. Isong, F. Lugayizi, and A. Abu-Mahfouz, ‘Towards
integrated framework for efficient educational software development’, in
2023 IEEE/ ACIS 215t International Conference on Software Engineering Research,
Management and Applications (SERA), IEEE, 2023, pp. 53-60.

A. Ahadi, R. Lister, S. Lal, and A. Hellas, ‘Learning programming, syntax
errors and institution-specific factors’, in Proceedings of the 20th Australasian
Computing Education Conference, 2018, pp. 90-96.

A. K. Veerasamy, D. D’Souza, and M.-]. Laakso, ‘Identifying novice student
programming misconceptions and errors from summative assessments’, J.
Edue. Technol. Syst., vol. 45, no. 1, pp. 50-73, 2016.

A. Mbiada, B. Isong, and F. Lugayizi, ‘A Comparative Study of Computer
Programming Challenges of Computing and Non-Computing First-Year
Students’, Indonesia. |. Comput. Sci., vol. 12, no. 4, 2023.

D. De Silva, S. Vidhanaarachchi, K. Sitiwardana, S. Gunasekara, U.
Piyumantha, and S. Thilakaratne, ‘RookieScript: Constructive Programming
Learning Space for Beginners’, 2023.

G. RoBling ez al, ‘Enhancing learning management systems to better
support computer science education’, ACM SIGCSE Bull., vol. 40, no. 4,
pp. 142-166, 2008.

N. M. Seel, T. Lehmann, P. Blumschein, and O. A. Podolskiy, Instructional
design for learning: Theoretical foundations. Springer, 2017.

R. Heinich, M. Molenda, and J. D. Russell, Instructional media and the new
technologies of instruction. Macmillan, 1989.

I. S. Junus, H. B. Santoso, R. Y. K. Isal, and A. Y. Utomo, ‘Usability
evaluation of the student centered e-learning environment’, Inz. Rev. Res.
Open Distrib. Learn., vol. 16, no. 4, pp. 62—82, 2015.

1034 | PyLe: An Interactive Tool for Improving Python Syntax Mastery in Non

