
 

 

Journal of Information Systems and Informatics 

Vol. 6, No. 2, June 2024 e-ISSN: 2656-4882 p-ISSN: 2656-5935 

DOI: 10.51519/journalisi.v6i2.751 Published By DRPM-UBD 
 

 

1008 

 
This work is licensed under a Creative Commons Attribution 4.0 International License. 

PyLe: An Interactive Tool for Improving Python Syntax 
Mastery in Non-Computing Students 

 
Alain Kabo Mbiada1, Bassey Isong2, Francis Lugayizi3  

 
12,3Computer Science Department North-West University, Mafikeng, South Africa 

Email: 1mbiadaalain@gmail.com, 2bassey.isong@nwu.ac.za, 3francis.lugayizi@nwu.ac.za 

 
 

Abstract 
 

The learning and mastering of programming language syntax pose a significant challenge 
for non-computing students. Most teaching approaches and existing educational tools 
often fail to address this issue. Therefore, this paper introduces an interactive learning 
environment called PyLe, specifically designed for introductory programming in Python 
programming courses. We evaluated the effectiveness of PyLe on first-year students at 
North-West University in South Africa and the University of Yaoundé 1, Cameroon. 
Firstly, the study conducts an experiment to assess the effect of PyLe on the time taken to 
solve a problem and the response quality. Secondly, PyLe’s usability and its instructional 
value were evaluated by the students and the instructors, respectively. The results from 
post-test method and a quantitative survey indicate that PyLe improves students’ ability to 
learn and master program syntax and has a high usability rate. Moreover, feedback from 
students and teachers affirms PyLe’s potential to address programming syntax challenges 
for non-computing students. However, the analyses revealed no real relationship between 
the time taken to complete a task in PyLe and the quality of the solution. This study 
contributes to improving the teaching and learning of computer programming, which has 
been considered difficult for both computing and non-computing students. 
 
Keywords: Computing programming, Program Syntax, PyLe, Teaching/Learning 
environments. 

 
1. INTRODUCTION 
 
Computer programming is widely recognized as an increasingly valuable skill in 
most professional environments. It serves as an effective medium for fostering 
computational thinking, which empowers an individual to analyse a problem, 
comprehend its nature, and devise potential solutions [1]. Programming skills 
necessitate students to grasp two key concepts: syntax, which pertains to the 
structure of well-formed language programs, and semantics, which relates to the 
significance or meaning of these programs. Moreover, the process of teaching and 
learning computer programming is more complex than it appears. This is because 
the objective of programming instruction is to equip students with the core 
competencies needed to develop a program that addresses a problem by 

https://doi.org/10.51519/journalisi.v6i2.751
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Journal of Information Systems and Informatics 
Vol. 6, No. 2, June 2024 

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882 

 

Alain Kabo Mbiada, Bassey Isong, at all | 1009 

articulating a given solution in a programming language that is considered 
inherently rigid and constrained. These programming languages comprise a 
vocabulary, grammar rules, and meanings, along with a translation environment 
designed to render their syntax machine-readable. Thus, the rigidity of 
programming languages, in comparison to natural languages, contributes to the 
difficulties faced by beginners in introductory programming (IP) modules. Given 
this ugly development, current research works in the field of computer science 
education (CSE) have proposed a plethora of teaching methods and tools to 
mitigate most of the challenges encountered by programming novices. These tools 
include the utilization of visual programming environments, visualization 
environments, and educational environments for programming [2]–[14]. 
However, despite acknowledging the significance of these suggested tools, a 
substantial body of research continues to reveal that students exhibit limited 
interest in programming courses [9], [10], [15], [16]. Most of them remain at a 
reproductive level of education when the course concludes [15]. This could 
potentially explain why a significant proportion of students fail to acquire the basic 
skills in IP [16]. Moreover, many students who complete such courses possess 
minimal confidence in their programming skills [9]. They often struggle with 
developing simple applications or even interpreting small fragments of code [10]. 
This collective evidence underscores the need for innovative approaches in 
teaching and learning programming. 
 
Furthermore, in the context of programming, the understanding of programming 
language syntax is undeniably crucial to the creation and execution of appropriate, 
semantically correct programs. It is challenging for a student who has not grasped 
the syntax and usage of a basic programming concept to employ this concept to 
solve a given problem, especially for non-computing students. Syntax errors in 
programming often become a significant source of frustration, discouragement, or 
even cause for dropping out for novices in IP modules [17]. Moreover, most 
beginners encounter difficulties in understanding compiler error messages, 
constructing a robust mental model for logical problem-solving, and 
comprehending basic programming concepts. However, most of the existing tools 
do not explicitly consider non-computing students and fail to address the syntax-
related issues they face. Consequently, in a previous study, we advocated for the 
development of learning materials specifically designed for non-computing 
students to enhance their IP skills [18].  
 
This paper aims to design, implement, and evaluate an interactive web-based 
environment to improve non-computing students’ understanding of programming 
language syntax based on the method proposed in [18]. The study approach is 
grounded in the cognitivism learning theory and incorporates interactive, visual, 
and organized resources and activities. These elements are designed to 
progressively prepare students to construct and comprehend code effectively. In 
response to the aforementioned frustration and demotivation, our proposed 



Journal of Information Systems and Informatics 
Vol. 6, No. 2, June 2024 

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882 

 

1010 | PyLe: An Interactive Tool for Improving Python Syntax Mastery in Non ….. 

approach also integrates misconceptions about basic programming concepts into 
the content. The motivation behind the development of this environment is to 
consolidate a diverse set of contents into a single course that can be utilized in IP 
courses. This consolidation aims to help non-computing students enhance their 
understanding of syntax and the application of basic programming concepts. 
Furthermore, the proposed tool can also assist teachers in an online or blended 
learning scenario to swiftly process the syntax of basic programming concepts, 
allowing them to devote the remainder of their time to problem-solving. This is 
because, in most traditional IP courses, teachers spend more time grappling with 
syntax issues than instructing beginners on problem-solving, often within a very 
limited timeframe. In addition, it can be employed to subsequently identify specific 
misconceptions related to non-computing students. Therefore, this paper’s 
objective is to answer the following research questions (RQs): 
 

RQ1: Which novel learning environment can be designed to enhance students’ 
programming syntax skills? 

RQ2: How does such a learning environment influence students’ performance 
in terms of learning and mastering program syntax? 

RQ3: How good is the learning environment’s usability and what potential 
effects does it have on the instructional process? 

 
These RQs guide the design, development and evaluation of the proposed learning 
environment's potential for enhancing the learning experience of non-computing 
students. The findings obtained were critically analysed and presented. Thus, the 
contribution of this paper is summarized as follows. 

1) We designed a module layout for introductory Python programming and 
developed an interactive learning environment, PyLe, to introduce non-
computing students to Python. It includes activities to assess students' 
ability to learn and master syntax, visualizations to enhance understanding 
of basic Python concepts, and resources focused on everyday problems 
with minimal mathematical challenges. 

2) Conducted experiments to assess the impact of the proposed PyLe on the 
teaching and learning of programming and its usability, respectively. 

3) Provided discussion on the effectiveness of PyLe and the comparison 
with other existing web-based learning environments. 

 
This document is organized as follows: Section II presents the method used and 
Section III presents the results. In addition, Section IV presents the paper 
discussion and Section V concludes the paper. 
 
 
 
 
 



Journal of Information Systems and Informatics 
Vol. 6, No. 2, June 2024 

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882 

 

Alain Kabo Mbiada, Bassey Isong, at all | 1011 

2. METHOD 
 
This section covers the literature review, research method, and procedure. 
 
2.1. Literature review 
 
This study completed a comprehensive review to identify the gaps in the existing 
tools and provide some background information. Therefore, this section presents 
some of the relevant background information and related works, including the 
tools developed to improve beginners' programming skills. We reviewed the 
development of web-based tools integrating several types of intelligent learning 
content for IP courses for first-year students, such as visual programming 
environments, visualization environments, and educational environments for 
programming. 
 
2.1.1. Programming and Syntax Errors  
 
Computer programming is the process that formulates instructions for a computer 
to execute to solve a problem. To effectively solve a problem, these instructions 
must adhere to certain rules and semantics that are specific to the programming 
language employed. These programming languages’ syntax rules include norms for 
words, symbols, and punctuation. In the programming context, the journey of 
learning to program is often riddled with mistakes, and beginners invariably 
commence coding with syntactical errors, and as they progress, semantical errors 
become an increasingly prevalent aspect of their programming experience [19]. 
Syntax errors, therefore, emerge as one of the most common types of errors in IP 
modules, which often lead to student frustration, high failure rates, and even 
module abandonment [17], [20]. The challenge is particularly intense for non-
computing students, who tend to struggle more compared to their computing 
counterparts [21]. In such scenarios, tailored support can prove to be immensely 
beneficial, especially if the students are spending a significant amount of time 
grappling with specific mistakes. This support can help them overcome their 
challenges more efficiently and improve their learning experience. 
 
2.1.2. Visual programming environments 
 
Visual programming environments are web platforms that enable learners to 
create programs graphically. Known as block-based or drag-and-drop 
environments, they help students build programming logic without the complex 
syntax of programming languages. They bridge the gap between learning syntax 
and computational thinking. However, most of these environments are designed 
for children, and transitioning to text-based programming can be challenging. 
Consequently, researchers pay consideration to this because block-based 
environments often lack a meaningful programming experience. Many researchers 



Journal of Information Systems and Informatics 
Vol. 6, No. 2, June 2024 

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882 

 

1012 | PyLe: An Interactive Tool for Improving Python Syntax Mastery in Non ….. 

concur that students could be attracted by the graphics without comprehending 
the underlying meaning they express [22]. Furthermore, visual programming tools 
can prove challenging to use when tackling large-scale projects. Kyfonidis et al. [2] 
introduced a block-based programming teaching tool designed to simplify learning 
C IP courses for beginners. The tool progressively translates visual models into 
programming concepts, allowing students to build programs by dragging and 
dropping blocks. However, it emphasizes logic over syntax and provides the 
option to convert block-based code to C text code, and vice versa. In the same 
vein, Jung et al. [3] built an interactive block-based environment to support 
program creation using the visual programming language and code generation in 
the C programming language. Concurrently, Moussa et al. [4] designed 
OOPVisual, an interactive 3D visualization tool, to enhance novice females’ 
understanding of Object-Oriented Programming (OOP) concepts, particularly 
polymorphism. OOPVisual employs the drag-and-drop technique, which 
ultimately helps students disregard syntax errors. It incorporates tutorials detailing 
the concept of polymorphism, quizzes, and exercises to aid students in practice. 
 
2.1.3. Visualization environments 
 
The visualization environments in this context are also web-based platforms that 
enable learners to graphically visualize the various stages of program execution. 
The aim is to improve code comprehension, code construction, and understanding 
of most core programming concepts. Most of these environments offer some level 
of interaction with students and integrate virtual compilers. Thus, Rowe and 
Thorburn [5] introduced Visual Instruction for Novices in a C Environment 
(VINCE), a Java-based web tool that visually demonstrates the execution of a 
correct C program. It enables students to observe or write a C program and 
examine its detailed execution. It covers basic programming concepts, pointers, 
structs, arrays, function calls, and dynamic memory allocation. Similarly, Hijón-
Neira et al. [6] introduced the Visual Execution Environment (VEE), a tool for 
teaching essential Java programming concepts to CS1 students. It uses visual 
metaphors to guide Java tasks and provides integrated applications with preloaded 
scripts. These scripts offer a variety of scripting practice options for learners 
during their courses. Furthermore, Yan et al. [7] created PROgramming 
Visualization Tool (PROVIT) for Web, a Java-based e-learning platform for C 
programming. PROVIT allows users to write, run, verify, and visualize C 
programs. Unlike many self-study tools like VILLE, VINCE, WADEIn, Jeliot, 
and VIP, PROVIT is also suitable for lectures. Each of these environments, with 
their unique features, significantly improves the programming learning experience. 
 
2.1.4. Educational Environments for Programming 
 
These environments provide a plethora of interactive web-based content and 
activities that can be fully leveraged for teaching and learning IP. Some of these 



Journal of Information Systems and Informatics 
Vol. 6, No. 2, June 2024 

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882 

 

Alain Kabo Mbiada, Bassey Isong, at all | 1013 

are extensions to the Moodle platform, a renowned free, open-source learning 
management system. The existence of these environments is often justified by the 
insufficiency of educational environments for practical programming languages 
such as C/C++ and Java. In addition, educators often express a desire to integrate 
several types of iterative learning content from a single source, rather than using 
multiple types from various sources or servers. Equally, Brusilovsky et al. [8] 
developed an architectural framework to unify different intelligent content systems 
into one system, leading to the creation of the Python Grids training system. It 
operates on servers across two continents, provides a non-mandatory learning 
environment for Python, and focuses on basic programming concepts. It caters to 
diverse student needs, offering a robust and versatile learning experience. Similarly, 
Mutiawani and Juwita [9] discussed the creation of an e-learning application 
tailored for IP courses that have content with a variety of activities, code practice, 
images, sounds, animations, and text. The code practice section uses EditArea, a 
free JavaScript editor, to improve code readability through syntax highlighting. On 
the same note, Samat et al. [10] investigated the creation and implementation of a 
constructivist multimedia learning environment to improve the programming 
skills of computer science students. It focuses on learning content, developing 
programming skills, and using technology. It also covers both basic and advanced 
programming concepts. Evaluations showed its effectiveness for students. 
Similarly, Virvou and Sidiropoulos [11] introduced a new e-learning system with 
collaborative tools for Python programming instruction. It facilitates group 
management, and student interaction and acts as an intelligent tutor, creating a 
unique student model based on interactions and recommending lessons tailored 
to each student’s profile. 
 
Furthermore, Stupina and Paniotova [12] introduced Chatbox, an interactive tool 
used in a blended learning environment for programming education. Chatbox 
improves student engagement, supports learning goals, and promotes mobile and 
interactive learning. It adapts to the student’s learning needs and style, allows self-
paced learning, and offers feedback. Similarly, Kakeshita and Murata [13] utilized 
pgtracer, a fill-in-the-blank tool, as a homework helper in programming classes. 
Pgtracer, a Moodle plug-in, helps beginners grasp programming concepts like 
loops, functions, and pointers. Students fill in the blanks, and pgtracer visualizes 
the step-by-step execution of the program, compares the response to the correct 
answer, and automatically grades the student. Pgtracer also has data collection 
features. Ferreira et al. [14] also discussed and evaluated SICAS2, a Moodle plug-
in based on constructivist theory. SICAS2 enables students to create programs 
with flowcharts and visualize program execution. It is not limited to any specific 
programming language and helps students understand basic programming 
concepts like read and write, for and while loops, and if and if/else statements. 
 
The discussed studies provide some of the digital tools to improve beginner IP 
skills, highlighting the importance of this in CSE. However, their application to 



Journal of Information Systems and Informatics 
Vol. 6, No. 2, June 2024 

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882 

 

1014 | PyLe: An Interactive Tool for Improving Python Syntax Mastery in Non ….. 

non-computing students is often not explicitly addressed. While these tools 
generally bypass syntax issues, an earlier study [21] indicates that syntax remains a 
significant challenge for these students [17] while teachers also find it difficult to 
adapt these tools to their needs. Moreover, large-scale learning management 
systems lack flexibility and dynamic content [23]. This study proposes an 
interactive learning environment to improve non-computing students’ 
understanding of basic programming concepts and syntax, aiming to fill existing 
gaps and offer a more customized and effective learning experience. 
 
2.2. Research Method 
 
This section presents the methodology employed in this paper to design, 
implement, and evaluate PyLe, an interactive tool aimed at enhancing Python 
syntax proficiency among non-computer science students. We follow a structured 
approach, incorporating literature review, design, surveys, and experimentation. 

1) Literature review: We conducted a comprehensive literature review to 
identify existing deficiencies in instructional programming tools as shown 
in Section 2.1. This step informed our design process for PyLe. 

2) Surveys on non-computing students: Surveys were administered to non-
computing students in two separate universities and results can be found 
in [21]. These helped in the understanding of the challenges these students 
face in IP courses. The findings from this phase guided the formulation 
of PyLe’s requirements. 

3) Requirements definition: Based on the outputs from the literature review 
and surveys, we outlined the requirements for PyLe. These requirements 
served as the foundation for the subsequent design and development 
phases. 

4) Design and development: We followed the IIAPDIE framework [18], 
specifically tailored for educational software design. PyLe was designed 
and developed with a focus on addressing the identified deficiencies and 
meeting the requirements. 

5) Evaluation: To assess PyLe’s effectiveness, we conducted experiments 
with non-computer science students from two institutions. The 
evaluation metrics included: 
a) Time Taken (TT): The duration required to complete a programming 

task using PyLe. 
b) Solution Quality (Grade): The quality of solutions produced by 

students using PyLe. 
c) Sample Size: We randomly selected 70 participants, dividing them 

into control and experimental groups. 
d) Comparison: We compared the performance (grades) and TT of the 

control group with those of the experimental group. 
e) Utility assessment: A quantitative survey was administered to control 

group participants to gauge the utility of PyLe. 



Journal of Information Systems and Informatics 
Vol. 6, No. 2, June 2024 

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882 

 

Alain Kabo Mbiada, Bassey Isong, at all | 1015 

f) Instructor influence: Interviews were conducted with instructors to 
understand the impact of PyLe on their teaching experience. 

 
Thus, PyLe’s design, development, and evaluation were guided by a rigorous 
methodology, resulting in an interactive tool that aims to enhance Python syntax 
mastery for non-computer students.  
 
3. RESULTS AND DISCUSSION 
 
3.1. The Proposed Interactive Learning Environment  
 
This sub-section presents the proposed interactive learning environment, referred 
to as PyLe, which serves as a response to RQ1. PyLe is designed and implemented 
following the various stages of the educational software development framework 
known as IIADPIE discussed in [18]. IIADPIE is an acronym that stands for the 
seven phases of the framework, detailed as follows: Initial; Instructional 
orientation; Analysis; Design; Production; Integration &Implementation; and 
Evaluation. This framework amalgamates certain practices of agile techniques, 
such as Scrum and the dynamic systems development method (DSDM), with 
instructional design methods such as ADDIE [24]  and ASSURE [25]. ASSURE 
and ADDIE is instructional design models that provide a framework for 
developing and delivering learning content that utilizes technology. ASSURE is an 
acronym that stands for: Analyse learner characteristics; State Objectives, Select, 
modify or design materials; Utilise materials; Require learner response; Evaluation. 
ADDIE is an acronym that stands for Analyse; Design; Develop; Implement; 
Evaluate. PyLe is grounded in the principles of cognitivism, which emphasizes the 
development of the learner’s memory. The primary objective of PyLe is to assist 
students in acquiring a thorough understanding of the syntax of basic 
programming concepts in Python. Thus, our main focus is on syntax 
comprehension, as it is intended to facilitate the learning process and enhance the 
students’ programming skills. The processes involved are discussed as follows: 
 
1) Design Goals 
PyLe aims to provide a comprehensive set of learning materials and a robust 
software infrastructure to support courses covering the fundamental concepts of 
Python programming. It empowers teachers to select from available and relevant 
materials to incorporate into their courses, making the content dynamic and 
organized into modules. These modules, managed by instructors, are further 
organized into a series of lessons. Each lesson comprises a set of sections or parts 
and includes resources and activities. These resources and activities are presented 
straightforwardly to enhance learning effectiveness. Moreover, activities are 
specifically designed to engage and motivate students, while teachers can assign 
homework to assess the quality of student learning. Thus, PyLe materials meet the 
following specifications and features: 



Journal of Information Systems and Informatics 
Vol. 6, No. 2, June 2024 

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882 

 

1016 | PyLe: An Interactive Tool for Improving Python Syntax Mastery in Non ….. 

a) Platform independence - can be accessed from various platforms and 
devices. 

b) Non-proprietary format - materials are not restricted to a specific 
proprietary format. 

c) Scalability and reusability - modules can be scaled and reused as needed. 
d) Dynamic content - content is not static and can adapt to different learning 

scenarios. 
e) Interactive Simulation - facilitates in-depth understanding. 
f) Interactive and automated feedback evaluation activities - activities 

provide instant feedback to students. 
g) Storage of student exercise attempts and grades - allows tracking of 

students’ progress. 
h) Learner’s profile building - PyLe tracks students’ progress and builds 

learner’s profiles. 
i) Feedback mechanism - provides the instructor with the ability to give 

feedback to students and vice versa. 
j) Student progress management and display - individual student reports and 

progress are managed and displayed. 
k) Time-bound lessons - lessons must be completed within a given 

timeframe, otherwise, students will not be able to move on to the activities 
section of the lesson. 

 
These features collectively make PyLe a comprehensive and effective learning 
environment for Python programming. 
 
2) PyLe Infrastructure 
PyLe is a web application that operates on a client-server architecture implemented 
using the PHP CodeIgniter Framework, with a MySQL database serving as the 
data storage medium. Additionally, PyLe employs the Model View Controller 
design pattern, which separates the application logic into three interconnected 
components, enhancing its manageability and scalability. The overall behaviour of 
the system, as depicted in Figure 1, is governed by the interactions of different 
users. Each client request is processed through the application programming 
interface (API). The system initially verifies the authenticity of the user, following 
which it directs the processing of the request to the system core. Depending on 
the nature of the user’s request, the system kernel routes it to the appropriate 
module. This module then processes the request and generates the corresponding 
response. This response can sometimes necessitate access to the database or an 
external service. While the system predominantly uses the API for most requests, 
when a user is logged into their administration panel, they are granted a session. 
This session permits them to access certain modules directly for the duration of 
the session. This architecture ensures a secure, efficient, and user-friendly 
interaction with the PyLe environment. The components of the PyLe architecture 
as shown in Figure 1 are as follows: 



Journal of Information Systems and Informatics 
Vol. 6, No. 2, June 2024 

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882 

 

Alain Kabo Mbiada, Bassey Isong, at all | 1017 

a) Administrative tools: This provides teachers and learners with essential 
workspace management functions, allowing them to interact with the system. 
For instance: 

▪ Module management: Teachers can create courses from scratch or 
use pre-existing modules. The default course module is already 
available in the environment. 

▪ Lesson updates: Teachers can add and update lessons, incorporating 
various resources and activities. 

▪ Assignments: Teachers can add, update, grade, and export assignment 
grades. Learners can complete assignments and view their grades. 

▪ Personalization: Learners can update profile information, including 
learning style, colour preferences, and prior programming experience. 

b) Client layer: This enables users (teachers and learners) to access PyLe via any 
mobile device or computer. 

c) PyLe server: At the core of the system, this handles security, authentication, 
authorization, routing, and interaction with other system elements. It 
constructs different learner profiles based on their interactions with the 
system. 

d) Database: This organizes data storage within the database. 
e) Third-party: The content delivery or distribution network (CDN) facilitates 

rapid resource transfer for loading internet content. It includes HTML pages, 
JavaScript files, style sheets, images, and videos. In PyLe, we utilize 
Bootstrap, jQuery, and the TINYMCE editor. 

 

 
Figure 1. PyLe Architecture 



Journal of Information Systems and Informatics 
Vol. 6, No. 2, June 2024 

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882 

 

1018 | PyLe: An Interactive Tool for Improving Python Syntax Mastery in Non ….. 

Table 1. Student Profile in PyLe 
Categories Elements Type/Values Use 

Personnal 
Information 

Nom String Identification 
Gender String Identification 
Age Scale Identification 
Country String Identification 
School/University String Identification 

Study level  
{Undergraduate, 
PostGraduate, Pupils, 
Other,} 

Identification 

Prior programming 
experiences  

{Yes, No} Initialization 

Prior mathematics 
experiences 

{Yes, No} Initialization 

Prior English 
experiences  

{Yes, No} Initialization 

UserName/ 
Password/ Email 

String Identification 

Learner's 
Features 

Cognitive capacity 
{Slow/Fast working 
memory, Poor/Good 
memory person} 

Initialization (Time 
assigned to each 
lesson might 
depend) 

Learning styles 
{Visual, Auditory and 
Reading/Writing} 

Initialization; 
Choice of content 
type and activities 

Learning goals 
{Acquire skills, Train for 
Exams, Obtain a good 
Grade, other,} 

Initialization; 
Choice of 
concepts and 
examples 

Self-confidence level {High, Medium, Low} 
Inference of 
learner's 
understanding 

Grade expectation {A, B, C, A+, etc.} 

Check if the desire 
is in adequation of 
the time dedicated 
to learning 

Learner color 
preference 

{Set of defined colors} 
Personalization of 
the learner's 
environment 

 Learning 
states 

State of 
Section/lesson 

{Acquired, To be Acquired, 
To be revised, Not to be 
suggested} 

Statistics 

State of the 
Activities 

{Acquired, To be Acquired, 
To be revised, Not to be 
suggested} 

Statistics 

Interaction 
between 

learner and 
system 

Number of lessons 
read 

Number Statistics 

Number of activities 
done 

Number Statistics 

State of the Lesson 
{Completed, Not 
completed} 

Statistics 

Last connexion datetime Statistics 



Journal of Information Systems and Informatics 
Vol. 6, No. 2, June 2024 

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882 

 

Alain Kabo Mbiada, Bassey Isong, at all | 1019 

Understanding of 
the activity 

{Not Understood, Not well 
understood, Well 
understood, All understood} 

Statistics 

Duration of the 
connexion  

In minute Statistics 

  
3) Student profile in PyLe 
In PyLe, profiles are constructed by amalgamating the following norms: PAPI, 
IMS LIP, and IMS RDECEO [18]. Learners' profiles are created based on the 
interactions of the students with the system, as shown in Table 1. In essence, each 
student can have multiple profiles within the system. These diverse profiles are 
utilized to compile the student’s progress report. This approach ensures a 
comprehensive understanding of each student’s learning journey, facilitating 
personalized instruction and feedback. 
 
4) Resources in PyLe 
The current version of PyLe encompasses nine (9) lessons, as detailed in Table 2. 
The resources provided by PyLe place a strong emphasis on the syntax of the 
fundamental concepts of the Python programming language. These resources 
utilize a variety of mediums, including text, code, images, sound, video, and 
visualization.  This multi-modal approach caters to diverse learning styles, thereby 
enhancing the learning experience. 

 
Table 2. A suggestion for the order of PyLe's lessons 

Lesson  Description Number of activities 

Lesson 1 Output function 09 
Lesson 2 Some Basic Programming 

Notions 
09 

Lesson 3 Variables 14 
Lesson 4 Simple Data types 04 
Lesson 5 Input Function 09 
Lesson 6 List 37 
Lesson 7 Conditionals 09 
Lesson 8 Loops 15 
Lesson 9 Functions 10 

 
The code type resource in PyLe provides the instructor with the flexibility to add 
or modify a piece of code in the section. To alleviate students’ frustration and 
enhance their debugging skills, the lessons incorporate, wherever feasible, the 
most common mistakes or misconceptions made by novices. These 
misconceptions, sourced from the literature, are accompanied by the 
corresponding compiler’s error message, providing students with practical insights 
into error handling. Furthermore, the lessons include visualizations designed to 
bolster students’ understanding of programming concepts. A distinctive feature of 
PyLe visualizations, as shown in Figure 3 is the ability for students to provide the 



Journal of Information Systems and Informatics 
Vol. 6, No. 2, June 2024 

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882 

 

1020 | PyLe: An Interactive Tool for Improving Python Syntax Mastery in Non ….. 

input data before execution. This feature contrasts with most existing 
visualizations, where the user cannot modify the input data, thereby offering a 
more interactive and engaging learning experience. The significant challenge in 
developing the content was to avoid problems based on mathematics, which are 
prevalent in traditional teaching method and most learning environments. This 
approach ensures that the focus remains on understanding programming concepts 
rather than mathematical problem-solving. 

 
Figure 2. PyLe lesson overview 

 

 
Figure 3. Sample of interactive visualization 



Journal of Information Systems and Informatics 
Vol. 6, No. 2, June 2024 

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882 

 

Alain Kabo Mbiada, Bassey Isong, at all | 1021 

5) Activities in PyLe 
PyLe activities encompass a broad range of exercises designed to verify whether 
the student has comprehended the lessons and can consequently identify and 
correct syntax errors. Most of the activities are based on misunderstandings of 
programming students discovered in the literature and previously covered in the 
course content. These activities, as shown in Figure 4, are categorized into the 
following types: 

a) Concepts inventories: These are a series of quizzes based on students’ 
misconceptions that can help the instructor determine whether or not 
students have mastered a concept [18]. 

b) Pearson problems: Unlike most Pearson problems that use the drag-and-
drop system, the Pearson problem in PyLe requires students to type their 
answers in the correct order. This ensures that students can enter the 
corresponding answer without making syntax errors. 

c) Matching questions: These use the drag-and-drop mechanism to test the 
students’ understanding. 

d) Fill-in-the-Blank Questions. 
 
Moreover, the study has resulted in a series of activities for all these categories, 
ready to be used for the aforementioned concepts in Python. These diverse and 
interactive activities aim to reinforce learning and enhance the student’s 
understanding of Python programming syntax. 
 

 
Figure 4. Overview of activities 

 



Journal of Information Systems and Informatics 
Vol. 6, No. 2, June 2024 

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882 

 

1022 | PyLe: An Interactive Tool for Improving Python Syntax Mastery in Non ….. 

As discussed above, PyLe is an educational environment that incorporates 
students’ misconceptions to enhance motivation and performance. It focuses on 
improving students’ Python programming syntax and offers user-friendly content 
on Python basics. It is suitable for use in both blended and online learning settings 
for an IP course or self-directed learning. Its rationale stems from the fact that 
most lecturers struggle to integrate programming syntax into teaching, and current 
research often overlooks syntax issues and their relevance to non-computer 
science students. PyLe addresses these concerns by considering students’ 
misunderstandings and introducing features for module reuse and content 
updates. Unlike other existing tools and given the target population and challenges 
discussed in [18], its content is based on real-life situations, not just mathematical 
skills, making it unique in its objective and development process. 

 
3.2. Evaluations 
 
This sub-section presents the evaluation of the proposed PyLe to establish its 
effectiveness in enhancing the programming skills of non-computing students. 
The assessments carried out in this section serve to address RQ2 and RQ3. This 
aligns with the final phase of the IIADPIE framework [18], which was employed 
to construct the proposed learning environment. An overview of the strategy 
implemented in this evaluation is presented in Figure 5 The strategy ensures a 
thorough understanding of the effectiveness and usability of the proposed PyLe. 
 

 
 

Figure 5. Evaluation workflow 
 
1) PyLe’s effectiveness  
 
To evaluate the effectiveness of PyLe, this study conducted an experiment to 
address RQ2. It aims to verify whether the TT to solve a problem has an impact 
on the grade or quality of the solution and whether using PyLe is more effective 
in learning program syntax than not using PyLe. 
 
Participants: The study involved non-computing students, including first-year 
trainee teachers from the Higher Teacher Training College (HTTC) in Cameroon 

Participants

First-year teacher trainees and a 

teacher,  HTTC 

Cameroon

02 

Weeks

Teaching and Learning while using PyLe

Teaching and Learning without PyLe

Teaching and Learning while using PyLe

Teaching and Learning without PyLe

04 

Weeks

First-Year students and a teacher, 

FNAS, NWU Mafikeng

South Africa

Evaluations

40 

minutes

Post-test on 

Programming 

concepts in 

Python

Teachers 

Interviews

Intervention

Questionnaires  

to the 

Experiment 

Groups



Journal of Information Systems and Informatics 
Vol. 6, No. 2, June 2024 

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882 

 

Alain Kabo Mbiada, Bassey Isong, at all | 1023 

and first-year students from the Faculty of Natural and Agricultural Sciences 
(FNAS) in South Africa. At both institutions, control and experimental groups 
were formed, with 15 students at HTTC and 20 students at FNAS. All 70 students 
were enrolled in introductory Python programming courses, with those in 
Cameroon studying in the second semester of 2023-24 and those in South Africa 
in the first semester of 2024. The course at FNAS is part of the CMPG111 module, 
while at HTTC, it serves as preparation for the INFO2122 unit on OOP with 
Python. 
 
Experiment and task description: The experimental group at HTTC used the PyLe 
environment in a blended learning setup, and the students engaged with the 
content and activities across nine lessons. The in-person sessions we employed 
allowed the instructor to address student concerns and provide additional 
explanations. Also, a WhatsApp group was established for ongoing support and 
engagement. Meanwhile, the FNAS experimental group (EG) used PyLe in a fully 
online setting, with a similar WhatsApp group for support. The focus of the 
experiment was on conditional statements and loops. The control groups (CG) at 
both universities underwent traditional courses on the same concepts. In addition, 
conditionals and loops were the programming concepts implemented during the 
experiment. Concurrently, CGs from both universities took traditional courses on 
the same programming concepts. The investigation was to determine the potential 
effect of TT to complete a task on the final GRADE achieved. In particular, the 
GRADE is related to the quality of the final product submitted by the students 
after a specific time TT spent. Also, the tasks given to the students included 
quizzes and problems identifying and correcting syntax errors in given programs. 
The quizzes aimed to enable students to predict the result of executing a given 
program, containing or not syntax errors, by choosing the correct answer from 
several propositions. 
 
Measuring instruments and variables: There were no pre-tests conducted on the groups. 
The experiments used post-tests to assess students’ ability to learn and grasp 
program syntax in Python. Hence, two variables, students’ GRADE (0-100%) and 
TT for a 40-minutes test were collected. Thus, the GRADE is a dependent variable 
while TT is the independent variable. In addition, the EG participants were coded 
as E01 to E015 for HTTC and E101 to E120 for the FNAS while the CG 
participants were coded as C01 to C015 for HTTC and C101 to C120 for FNAS.  
 
Hypotheses formulation: The null hypotheses tested in these experiments aim to gauge 
the significance of adopting the PyLe environment as a crucial learning material 
for improving students’ ability to learn and master program syntax in the 
introductory Python programming courses. The specific hypotheses are outlined 
as follows: 
 



Journal of Information Systems and Informatics 
Vol. 6, No. 2, June 2024 

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882 

 

1024 | PyLe: An Interactive Tool for Improving Python Syntax Mastery in Non ….. 

H01: The ability to learn and master program syntax in Python is the same for both EG and 
CG in terms of grade. 

H01: µGRADEEG = µGRADECG 

 

H02: The time spent performing on PyLe is the same for both EG and CG. 
H02: µTTEG = µTTCG 

 
Additionally, based on the test, the H01 and H02 will be rejected if their respective 
p-values ρ < 0.05. 
 
Statistical techniques: The selection of statistical techniques is contingent upon the 
distribution of the variables in question. Given the sample size of over 50 
participants, we conducted the Kolmogorov-Smirnov test on the GRADE and TT 
variables to test the normality of the data. The results indicated that both GRADE 
and TT were not normally distributed, as their p-values were less than 0.05. 
Consequently, we used the independent-sample Mann-Whitney U-test to test 
hypotheses H01 and H02. Moreover, we carried out Pearson's correlation test to 
check whether there was a relationship between TT and GRADE. 
 
3.3 Results and analysis 
 
This subsection presents the results of the evaluation. As presented in Figure 6 
and Figure 7, the participants’ grades, reflecting their ability to learn and master 
problem syntax in Python, are highly satisfactory for the experimental groups 
(EGs), with the top score reaching 100%. Furthermore, the analysis of means and 
standard deviations reveals that EGs generally surpass CGs in terms of grades. 
Specifically, EGs mean grade is 61.5%, as shown in Table 3, which is significantly 
higher than CGs mean grade of 37%. Conversely, when it comes to the average 
time spent on the test, CGs slightly exceed EGs, with a percentage of 23.6% 
compared to EGs at 21.6%. 
 

 
Figure 6. Post-test results for Cameroon 

0

20

40

60

80

100

120

E
0

1

E
0

2

E
0

3

E
0

4

E
0

5

E
0

6

E
0

7

E
0

8

E
0

9

E
0

1
0

E
0

1
1

E
0

1
2

E
0

1
3

E
0

1
4

E
0

1
5

C
0

1

C
0

2

C
0

3

C
0

4

C
0

5

C
0

6

C
0

7

C
0

8

C
0

9

C
0

1
0

C
0

1
1

C
0

1
2

C
0

1
3

C
0

1
4

C
0

1
5

GRADE TT



Journal of Information Systems and Informatics 
Vol. 6, No. 2, June 2024 

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882 

 

Alain Kabo Mbiada, Bassey Isong, at all | 1025 

Table 3. Descriptive analysis of Grade and TU. 
 Mean SD 

Experimental Group 
GRADE 61.53 19.59 

Time Taken (TT) 21.63 6.41 

Control Group 
GRADE 37.03 19.31 

Time Taken (TT) 23.34 6.79 

 
 

 
Figure 7. Post-test results for South Africa 

 
In addition, to further determine the significance of the above results, we tested 
the formulated hypotheses using the independent-samples Mann Whitney U-test 
as shown in Figure 8, and Figure 9. The findings indicate that the p-value for the 
paired variable GRADECG - GRADEEG is 0.000, which is less than 0.05. This leads 
to the rejection of the H01. Consequently, the alternative hypothesis that 
GRADECG is superior to GRADEEG is accepted, given that the mean µGRADEEG 
= 61.53 significantly exceeds the mean µGRADECG= 37.03. Moreover, the p-
value for the paired variables TTCG - TTEG is 0.361, which is greater than 0.05. 
This implies that the H02 cannot be rejected. Therefore, we can conclude that the 
difference between µTTEG and µTTEG is not statistically significant due to several 
factors that guide the experiment. As a result, the variance in the average time 
students take to complete the test between the two groups is not significant. 
Furthermore, a Pearson’s correlation test was conducted, revealing that the p-value 
for the variables GRADEEG and TTEG is 0.191, and for the variables GRADECG 
and TTCG is 0.233, both of which are greater than 0.05. This suggests that the 
student’s grades are not dependent on the time taken to complete the test for 
participants in either group.  
 

0

20

40

60

80

100

120

E
1

1
E

1
2

E
1

3
E

1
4

E
1

5
E

1
6

E
1

7
E

1
8

E
1

9
E

1
1

0
E

1
1

1
E

1
1

2
E

1
1

3
E

1
1

4
E

1
1

5
E

1
1

6
E

1
1

7
E

1
1

8
E

1
1

9
E

1
2

0
C

1
1

C
1

2
C

1
3

C
1

4
C

1
5

C
1

6
C

1
7

C
1

8
C

1
9

C
1

1
0

C
1

1
1

C
1

1
2

C
1

1
3

C
1

1
4

C
1

1
5

C
1

1
6

C
1

1
7

C
1

1
8

C
1

1
9

C
1

2
0

GRADE TT



Journal of Information Systems and Informatics 
Vol. 6, No. 2, June 2024 

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882 

 

1026 | PyLe: An Interactive Tool for Improving Python Syntax Mastery in Non ….. 

In light of these findings, while the use of PyLe did not consistently lead to 
students completing exams more quickly, it did significantly enhance their ability 
to learn and master Python’s syntax. This is a reasonable outcome, considering 
that most of the students have not previously taken exams designed to identify 
and correct syntactic errors. 
 

 
 

Figure 8. Independent-samples Mann-Whitney U Test on GRADE 
 
 

 
 

Figure 9. Independent-samples Mann-Whitney U Test on TT 
 
 



Journal of Information Systems and Informatics 
Vol. 6, No. 2, June 2024 

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882 

 

Alain Kabo Mbiada, Bassey Isong, at all | 1027 

1)  PyLe's usability assessment and instructional effect 
 

This subsection presents PyLe usability evaluation and its instructional effect on 
the parts of the instructors. We employed post-experiment procedures that 
adhered to the quantitative design technique to address RQ3. The study 
participants are all CG students discussed above, totalling 35 students. In this case, 
we designed and distributed questionnaires after the experiment about the usability 
of the PyLe environment based on several usability assessment criteria. The 
questionnaire, adapted from the one referenced in [26], consists of six sections 
with a total of 23 questions. The participants were asked to respond based on an 
ordinal scale with values ranging from Strongly Disagree (1) to Strongly Agree (5). 
The questionnaires were administered to the students, and the data was 
subsequently collected and analyzed using descriptive statistics in SPSS software. 
Moreover, before data collection from NWU teachers and students, an ethics 
certificate was obtained from the FNAS ethics committee. To ensure or affirm the 
reliability and validity of the results, the Cronbach’s alpha value obtained was 0.80, 
indicating a high degree of internal consistency in the questionnaire responses.  
 
The usability of PyLe for students was assessed across several categories or criteria, 
such as visual design, navigation, accessibility, interactivity, self-assessment and 
learnability, and motivation to learn. The findings are detailed in Table 4. Findings 
analysis shows that students strongly endorse PyLe’s navigation, interactivity, self-
assessment, and learnability features. However, they concur that PyLe enhances 
their motivation to learn and that its visual design and accessibility are satisfactory. 
Moreover, most student responses are concentrated around the corresponding 
means. Despite the acceptable responses, there is room for PyLe to enhance its 
accessibility. Particularly, the question regarding whether PyLe has any technical 
issues frequently receives a score of 2, which corresponds to ‘Disagree’ on the 
Likert scale. This suggests a need to address potential technical issues in PyLe to 
improve the overall user experience. 
 

Table 4. Descriptive analysis result of PyLe’s Usability 

 Criteria Mean Median Mode 
Std. 

Deviation 

Visual Design 4.11 4 4 0.79 

Text, images, and visualization are easy to 
understand 

3.91 4 5 1.12 

Fonts (style, colour, etc.) are easy to read 4.03 4 4 0.86 

Relevant information is placed in areas 
that catch your attention. 

3.94 4 4 0.91 

Navigation 4.60 5 5 0.49 

You can decide which sections of the 
lesson you want to view 

4.29 4 4 0.71 

Lesson content is only a few clicks away 4.26 4 4 0.78 



Journal of Information Systems and Informatics 
Vol. 6, No. 2, June 2024 

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882 

 

1028 | PyLe: An Interactive Tool for Improving Python Syntax Mastery in Non ….. 

 Criteria Mean Median Mode 
Std. 

Deviation 

You can track your progress on PyLe 4.34 5 5 0.90 

The menus for accessing content are 
organized 

4.17 4 4 0.82 

Accessibility 3.85 4 4 0.80 

PyLe pages and other elements were 
easily accessible in a reasonable time 

4.06 4 4 0.80 

PyLe is easy to access from any platform 3.66 4 5 1.18 

PyLe has no technical problems 3.17 3 2 1.24 

Interactivity 4.40 5 5 0.73 

PyLe offers facilities to make the learning 
process more engaging and motivating 

4.20 4 4 0.75 

PyLe provides access to a set of 
resources adapted to the learning context 

4.31 4 4 0.67 

PyLe engages learners in tasks that are 
closely linked to learning goals and 
objectives 

4.20 4 4 0.90 

Self-Assessment and Learnability 4.57 5 5 0.55 

You can predict the overall result of 
clicking on each button or link 

3.77 4 4 0.91 

You can easily understand the purpose of 
using PyLe in the learning process 

4.46 4 4 0.56 

Each lesson offers you a set of activities 
to check your level of understanding 

4.49 5 5 0.70 

Several types of activities are offered in 
Pyle 

4.51 5 5 0.50 

PyLe activities prepare you to avoid a 
range of syntax errors 

4.49 5 5 0.85 

Motivation to learn 4.14 4 4 0.84 

You've found the content very useful for 
understanding and avoiding syntax errors 

4.20 4 4 0.86 

PyLe's lessons encourage you to deepen 
your knowledge 

4.26 4 4 0.78 

You found PyLe's content enjoyable and 
interesting 

4.03 4 5 1.07 

PyLe content provides lessons that 
match your life experience 

3.40 4 4 1.00 

PyLe content provides frequent and 
various learning activities that set you up 
for success 

4.17 4 4 0.89 

 
Moreover, still, in response to RQ3, we also conducted post-experimental 
interviews with the two teachers responsible for the modules. This was aimed at 
providing feedback on PyLe’s content, its utility, and their willingness to 
incorporate it into their teaching materials. The analysis of their responses revealed 
that the content was found to be factual, current, and comprehensive. The system 
layout was intuitive and easy to navigate, with real-world examples. The tools were 



Journal of Information Systems and Informatics 
Vol. 6, No. 2, June 2024 

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882 

 

Alain Kabo Mbiada, Bassey Isong, at all | 1029 

deemed superior to comparable ones, with appreciated features like student 
progress tracking, content adaptability, relevant objectives, and logical task 
sequencing. The tool aligned with their ethical standards and values, and the 
content was consistent with the curriculum. Following the experiments, additional 
students were enrolled in PyLe, confirming its seamless integration into teaching 
and learning practices. However, suggestions for improvements included more 
visualizations, inclusion of other Python concepts, and expansion to other 
programming languages like C, C++, and Java. 
 
2) Validity Threats 
 
To ensure the veracity of the results presented above, we have implemented 
various measures. We carefully recorded the reactions of PyLe users, and only 
those students who actively engaged with the environment by reading information 
and participating in activities were included in the post-test and the subsequent 
questionnaire. Moreover, the teachers who were interviewed were exclusively 
those who participated in the trials. The post-test questions were carefully curated 
to only include subjects that were studied using the PyLe environment. To 
accurately estimate the consent of participants and prevent measurement bias, the 
responses to the questionnaire were evaluated on a 5-point Likert scale. 
Furthermore, to ensure the quality of the data, a reliability test was conducted using 
the data obtained from the students’ usability survey. It is important to note that 
every participant completed the questionnaire and took part in the post-test. The 
analysis of these results has bolstered our confidence in the accuracy of the 
previously reported findings. Consequently, we are confident in the quality of the 
outcomes presented above. 

 
3.4 Discussion And Comparison 

 
In this paper, we have designed, implemented, and evaluated a novel learning 
environment for programming in Python called PyLe. PyLe is an educational 
environment designed for introducing Python programming, grounded in the 
IIADPIE framework. This framework integrates pedagogical and agile approaches 
to structuring and managing educational software design [18]. PyLe is specifically 
designed for non-computing students, focusing on syntactic issues in Python. It 
offers easily digestible content on the fundamentals of Python programming. In 
blended or online learning settings, instructors can employ PyLe for Python 
courses, while students can use it for self-directed learning and assessment. Unlike 
most existing tools [2]–[14], PyLe incorporates students’ misconceptions into its 
content development to alleviate widespread frustration during coding. Moreover, 
the key features of PyLe include module reuse across different classes and the 
ability for teachers to update existing content, aspects that are often overlooked in 
other tools. In addition, PyLe stands out due to its specific objectives and 



Journal of Information Systems and Informatics 
Vol. 6, No. 2, June 2024 

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882 

 

1030 | PyLe: An Interactive Tool for Improving Python Syntax Mastery in Non ….. 

development process, which prioritize real-life scenarios, contrasting with tools 
that are primarily tailored to mathematically skilled students. Table 5 provides 
important details on the differences between PyLe and some existing tools. 
 
Furthermore, PyLe underwent implementation and assessment on two modules 
across Cameroon and South Africa to determine its effectiveness in teaching and 
learning. The post-experimental evaluations conducted revealed that students who 
used PyLe outperformed their peers in assessing their ability to learn and solve 
syntactic programming problems. Interestingly, the TT by students to complete 
the task given did not significantly impact their final scores (Grade). This suggests 
that PyLe’s unique assessment design effectively helps students learn, master, 
identify, and correct Python syntax. Furthermore, post-experiment surveys 
indicated high usability for PyLe. Most lessons were fully read, and participants 
completed the activities as shown in Figure 10 and Figure 11. In addition, an 
analysis of interviews with teachers confirmed their positive perception of PyLe, 
leading to its incorporation into their teaching practices. 
 

 
Figure 10. Overview of a Student Progress Report 

 

 
Figure 11. Student’s activities report 



Journal of Information Systems and Informatics 
Vol. 6, No. 2, June 2024 

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882 

 

Alain Kabo Mbiada, Bassey Isong, at all | 1031 

Table 5. Theoretical comparison of PyLe with some existing learning 
programming environments 

Learning 
Tools 

Education 
theory 

Target 
population 

Aims and 
learning 
context 

Nature of the Content and 
Other Features 

PyLe Cognitivism 
Non-

computer 
students 

Learning and 
understandin
g of 
programmin
g syntax. 
Use in 
blended and 
e-learning 
contexts. 

Resources (text, images, video, 
dynamic visualization, 
annotated examples, etc.), and 
activities that can be updated 
by the teacher. Based on the 
IIADPIE framework [18] and 
Python programming language. 
Includes output, comparison 
operators, logic operators, 
simple data types, input, lists, 
variables if statements, loops, 
and functions. 

Practice 
Grids 

training 
system  [8] 

N/A N/A 

Code 
comprehensi
on,  
construction, 
and non-
mandatory 
practice. Can 
be used in 
blended 
situations. 

Focus on Python programming 
language. It includes variables, 
if statements, loops, and logical 
operators. 

Multimedi
a Learning 
Environm

ent [9] 

Constructivist 
Computer 
education 
students 

Code 
comprehensi
on 

Defined its development design 
method in four main points. 
Includes basic and advanced 
programming concepts. 

Constructi
vist 

multimedi
a learning 
environme

nt [10] 

Constructivist N/A 

Support 
student 
interaction 
and group 
formation 

No content.  

Chatbox 
[12] 

N/A N/A 

Facilitate 
self-paced 
learning and 
can be used 
in a blended 
context. 

A development design method 
based on 10 principles for PHP 
and others not mentioned. 
Includes variable and data 
types, conditionals, loops, 
arrays, strings, and functions. 

Pgtracer 
[13] 

N/A N/A 

Moodle 
plugin for 
Code 
comprehensi
on. It is used 
as a 
homework 
aid in 
programmin
g. 

Focus on C programming 
language and includes loops, 
functions and pointers. 



Journal of Information Systems and Informatics 
Vol. 6, No. 2, June 2024 

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882 

 

1032 | PyLe: An Interactive Tool for Improving Python Syntax Mastery in Non ….. 

Learning 
Tools 

Education 
theory 

Target 
population 

Aims and 
learning 
context 

Nature of the Content and 
Other Features 

SICA2 
[14] 

Constructivist N/A 

Moodle 
plugin for 
the 
construction 
of program 
flowcharts. 

Programming concepts 
included variables and basic 
control structures. 

 

 
4. CONCLUSION 
 
This paper presented PyLe, a novel tool designed to help non-computing students 
in mastering Python syntax. PyLe’s significance lies in its focus on improving 
syntax error detection and correction skills, an area often overlooked by existing 
programming learning tools. Our PyLe, designed using the IIAPDIE framework 
and cognitivism principles, offers dynamic resources and activities. It can be 
utilized for self-learning or in blended and online educational settings, providing 
various features beneficial for educators. The effectiveness of PyLe was evaluated 
through post-test studies involving first-year students from NWU, South Africa, 
and the HTTC, University of Yaoundé I, Cameroon. The students were divided 
into control and experimental groups. The results obtained show that the control 
group who used PyLe in their tasks, outperformed the experimental group with a 
mean score of 61.53 in the learning and mastery of Python syntax. Furthermore, 
PyLe’s usability and instructional impacts were assessed using questionnaires for 
the control group and interviews with the module instructors. The feedback 
indicated that students found several aspects of PyLe’s usability effective, and 
teachers deemed PyLe a useful and acceptable teaching tool. This underscores the 
need to integrate PyLe into teaching and learning to help non-computing students 
grasp and master the syntax of programming more effectively. However, it was 
observed that PyLe did not significantly reduce the time students spend on coding 
tasks. This is an area we aim to improve in future iterations of the tool. Our future 
work will focus on enriching PyLe’s content and creating more visualizations to 
enhance the learning experience. We also plan to extend PyLe’s capabilities to 
other programming languages such as C and C++, thereby broadening its scope 
and utility. These aim to further boost PyLe’s effectiveness as a learning tool for 
non-computing students. 
 
REFERENCES 
 
[1] S. Grover, ‘Designing an assessment for introductory programming 

concepts in middle school computer science’, in Proceedings of the 51st ACM 
Technical Symposium on Computer Science Education, 2020, pp. 678–684. 



Journal of Information Systems and Informatics 
Vol. 6, No. 2, June 2024 

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882 

 

Alain Kabo Mbiada, Bassey Isong, at all | 1033 

[2] C. Kyfonidis, N. Moumoutzis, and S. Christodoulakis, ‘Block-C: A block-
based programming teaching tool to facilitate introductory C programming 
courses’, in 2017 IEEE Global Engineering Education Conference (EDUCON), 
IEEE, 2017, pp. 570–579. 

[3] I. Jung, J. Choi, I.-J. Kim, and C. Choi, ‘Interactive learning environment 
for practical programming language based on web service’, in 2016 15th 
International Conference on Information Technology Based Higher Education and 
Training (ITHET), IEEE, 2016, pp. 1–7. 

[4] W. E. Moussa, R. M. Almalki, M. A. Alamoudi, and A. Allinjawi, ‘Proposing 
a 3d interactive visualization tool for learning OOP concepts’, in 2016 13th 
Learning and Technology Conference (L&T), IEEE, 2016, pp. 1–7. 

[5] G. Rowe and G. Thorburn, ‘VINCE—An on-line tutorial tool for teaching 
introductory programming’, Br. J. Educ. Technol., vol. 31, no. 4, pp. 359–369, 
2000. 

[6] R. Hijón-Neira, C. Pizarro, J. French, P. Paredes-Barragán, and M. Duignan, 
‘Improving CS1 Programming Learning with Visual Execution 
Environments’, Information, vol. 14, no. 10, p. 579, 2023. 

[7] Y. Yan, H. Nakano, K. Hara, T. Kazuma, and A. He, ‘A Web Service for C 
Programming Learning and Teaching’, in 2016 10th International Conference on 
Complex, Intelligent, and Software Intensive Systems (CISIS), IEEE, 2016, pp. 
414–419. 

[8] P. Brusilovsky, L. Malmi, R. Hosseini, J. Guerra, T. Sirkiä, and K. Pollari-
Malmi, ‘An integrated practice system for learning programming in Python: 
design and evaluation’, Res. Pract. Technol. Enhanc. Learn., vol. 13, pp. 1–40, 
2018. 

[9] V. Mutiawani and others, ‘Developing e-learning application specifically 
designed for learning introductory programming’, in 2014 International 
Conference on Information Technology Systems and Innovation (ICITSI), IEEE, 
2014, pp. 126–129. 

[10] C. Samat, S. Chaijaroen, I. Kanjug, and P. Vongtathum, ‘Design and 
development of constructivist multimedia learning environment enhancing 
skills in computer programming’, in 2017 6th IIAI International Congress on 
Advanced Applied Informatics (IIAI-AAI), IEEE, 2017, pp. 1023–1026. 

[11] M. Virvou and S. C. Sidiropoulos, ‘Collaborative tools in learning a 
programming language’, in 2012 International Conference on E-Learning and E-
Technologies in Education (ICEEE), IEEE, 2012, pp. 162–165. 

[12] M. Stupina and V. Paniotova, ‘An Educational Chatbot in a Blended 
Learning Environment’, in 2023 3rd International Conference on Technology 

Enhanced Learning in Higher Education (℡E), IEEE, 2023, pp. 276–279. 
[13] T. Kakeshita and M. Murata, ‘Application of programming education 

support tool pgtracer for homework assignment’, Int. J. Learn. Technol. Learn. 
Environ., vol. 1, no. 1, pp. 41–60, 2018. 



Journal of Information Systems and Informatics 
Vol. 6, No. 2, June 2024 

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882 

 

1034 | PyLe: An Interactive Tool for Improving Python Syntax Mastery in Non ….. 

[14] A. Ferreira, A. Gomes, and A. J. Mendes, ‘SICAS2: Interactive Tool to 
Support Programming Learning’, in 2022 International Symposium on 
Computers in Education (SIIE), IEEE, 2022, pp. 1–5. 

[15] S. B. Yusupova, O. R. Sultanov, R. S. Baltayev, and F. A. Bekchanov, ‘The 
advantage of using e-learning in teaching students programming languages’, 
in 2022 IEEE International Multi-Conference on Engineering, Computer and 
Information Sciences (SIBIRCON), IEEE, 2022, pp. 1910–1913. 

[16] J. Figueiredo and F. García-Peñalvo, ‘Teaching and learning tools for 
introductory programming in university courses’, in 2021 International 
Symposium on Computers in Education (SIIE), IEEE, 2021, pp. 1–6. 

[17] M. A. Sana’a, T. A. Dousay, and C. L. Jeffery, ‘Integrated learning 
development environment for learning and teaching C/C++ language to 
novice programmers’, in 2020 IEEE Frontiers in Education Conference (FIE), 
IEEE, 2020, pp. 1–5. 

[18] A. K. Mbiada, B. Isong, F. Lugayizi, and A. Abu-Mahfouz, ‘Towards 
integrated framework for efficient educational software development’, in 
2023 IEEE/ACIS 21st International Conference on Software Engineering Research, 
Management and Applications (SERA), IEEE, 2023, pp. 53–60. 

[19] A. Ahadi, R. Lister, S. Lal, and A. Hellas, ‘Learning programming, syntax 
errors and institution-specific factors’, in Proceedings of the 20th Australasian 
Computing Education Conference, 2018, pp. 90–96. 

[20] A. K. Veerasamy, D. D’Souza, and M.-J. Laakso, ‘Identifying novice student 
programming misconceptions and errors from summative assessments’, J. 
Educ. Technol. Syst., vol. 45, no. 1, pp. 50–73, 2016. 

[21] A. Mbiada, B. Isong, and F. Lugayizi, ‘A Comparative Study of Computer 
Programming Challenges of Computing and Non-Computing First-Year 
Students’, Indonesia. J. Comput. Sci., vol. 12, no. 4, 2023. 

[22] D. De Silva, S. Vidhanaarachchi, K. Siriwardana, S. Gunasekara, U. 
Piyumantha, and S. Thilakaratne, ‘RookieScript: Constructive Programming 
Learning Space for Beginners’, 2023. 

[23] G. Rößling et al., ‘Enhancing learning management systems to better 
support computer science education’, ACM SIGCSE Bull., vol. 40, no. 4, 
pp. 142–166, 2008. 

[24] N. M. Seel, T. Lehmann, P. Blumschein, and O. A. Podolskiy, Instructional 
design for learning: Theoretical foundations. Springer, 2017. 

[25] R. Heinich, M. Molenda, and J. D. Russell, Instructional media and the new 
technologies of instruction. Macmillan, 1989. 

[26] I. S. Junus, H. B. Santoso, R. Y. K. Isal, and A. Y. Utomo, ‘Usability 
evaluation of the student centered e-learning environment’, Int. Rev. Res. 
Open Distrib. Learn., vol. 16, no. 4, pp. 62–82, 2015. 
 


