Web-Based Wind Speed Forecasting System Using Prophet

  • Elvan Dito Siregar Universitas Islam Negeri Sumatera Utara Medan, Indonesia
  • Raissa Amanda Putri Universitas Islam Negeri Sumatera Utara, Indonesia
Keywords: Wind Speed Forecasting, Prophet, Web-Based System, RMSE, Meteorology

Abstract

The research undertaken has the central purpose of creating as well as applying a digital platform accessible through the internet, which is structured specifically to anticipate variations in wind velocity by employing the Prophet algorithm as the analytical framework. The system addresses the need for accurate and accessible forecasting tools in Medan, where highly variable wind patterns affect transportation, agriculture, and disaster mitigation. The research methodology consists of several stages including data collection from BMKG Medan, preprocessing through cleaning and aggregation of daily measurements into monthly averages, forecasting using the Prophet model, system development, and evaluation. Prophet was selected due to its ability to capture trend and seasonal components effectively with minimal parameter tuning. The system was developed using Laravel, MySQL, and Chart.js, integrating Prophet through Python to generate interactive visualizations and downloadable reports. The effectiveness of the predictive framework was measured by means of the Root Mean Square Error (RMSE = 0.19) and Mean Absolute Error (MAE = 0.15), validating the suitability of the method for producing consistent monthly forecasts of wind velocity. The system provides stakeholders such as disaster management agencies, marine operators, and agricultural planners with a practical platform for accessing accurate and timely forecasts. The findings further demonstrate the novelty of integrating Prophet forecasting with a web-based information system equipped with visualization and reporting features, thereby enhancing usability, accessibility, and decision-making support for regional meteorological applications.

Downloads

Download data is not yet available.

References

T. A. Kurniawan and K. D. Hartomo, “Pengelolaan perlindungan data pribadi menggunakkan mongodb change streams untuk sistem notifikasi real-time,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 10, no. 2, pp. 1460–1473, 2025, doi: 10.29100/jipi.v10i2.6134.

J. M. Mbugua and Y. Hiraga, “Recent Advances in Long-Term Wind-Speed and -Power Forecasting : A Review,” pp. 1–30, 2025.

M. F. G. Matondang, “Pemanfaatan Sistem Informasi Geografis Dalam Penentuan Hirarki Pusat Pelayanan Kota Medan,” Geography Science Education Journal (GEOSEE), vol. 1, no. 2, pp. 68–72, 2020.

D. Song, J. Yang, M. Dong, and Y. H. Joo, “Kalman filter-based wind speed estimation for wind turbine control,” Int J Control Autom Syst, vol. 15, no. 3, pp. 1089–1096, 2020, doi: 10.1007/s12555-016-0537-1.

B. Jange, “Prediksi Harga Saham Bank BCA Menggunakan XGBoost,” ARBITRASE: Journal of Economics and Accounting, vol. 3, no. 2, pp. 231–237, 2022, doi: 10.47065/arbitrase.v3i2.495.

C. Chandra and S. Budi, “Analisis Komparatif ARIMA dan Prophet dengan Studi Kasus Dataset Pendaftaran Mahasiswa Baru,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 6, no. 2, pp. 278–287, 2020, doi: 10.28932/jutisi.v6i2.2676.

F. Riestiansyah, D. Damayanti, M. Reswara, and R. Susetyoko, “Perbandingan metode ARIMA dan ARIMAX dalam Memprediksi Jumlah Wisatawan Nusantara di Pulau Bali,” Jurnal Infomedia, vol. 7, no. 2, p. 58, 2022, doi: 10.30811/jim.v7i2.3336.

E. R. Putri et al., “Penerapan Algoritma Prophet Facebook untuk Memprediksi Jumlah Calon Mahasiswa Baru,” vol. 5, no. 4, pp. 1588–1596, 2024.

G. R. Baihaqi and Mulaab, “Long Short-Term Memory for Prediction of Wave Height and Wind Speed Using Prophet for Outliers.” Jurnal Ilmiah Kursor, vol. 12, no. 2, pp. 59–68, 2023.

H. Wadi and M. A. Subandri, “Penggunaan Software Metrics Dan Abstract Syntax Tree Untuk Mendeteksi Code Smell Pada Bahasa Pemrograman Python,” JEKIN-Jurnal Teknik Informatika, vol. 5, no. 1, 2024.

J. Thaker and R. Höller, “A Comparative Study of Time Series Forecasting of Solar Energy Based on Irradiance Classification,” Energies (Basel), vol. 15, no. 8, 2022, doi: 10.3390/en15082837.

A. Halim Hasugian, R. Amanda Putri, and M. Alfan Simatupang, “Penerapan Algoritma Klasifikasi Naïve Bayes Untuk Analisis Sentimen Tentang Pemindahan Ibu Kota Negara,” Journal of Science and Social Research, no. 2, pp. 635–644, 2024.

I. Fitria, P. Hasanah, and P. S. Matematika, “Penerapan Algoritma Kalman Filter dalam Prediksi Kecepatan Angin di Kota Balikpapan,” vol. 1, no. 2, pp. 25–32, 2020.

T. Andrianajaina and T. D. Razafimahefa, “Solar irradiation forecasting using Prophet,” no. 6, pp. 175–179, 2022.

Ramadhana, Islamiyah, and A. P. A. Masa, “Penerapan Data Mining Menggunakan Metode K-Means Clustering Pada Data Ekspor Batubara,” Adopsi Teknologi dan Sistem Informasi (ATASI), vol. 2, no. 1, pp. 35–42, Jun. 2023, doi: 10.30872/atasi.v2i1.595.

Al-Khowarizmi, Rahmad Syah, Mahyuddin K. M. Nasution, and Marischa Elveny, “Sensitivity of MAPE using detection rate for big data forecasting crude palm oil on k-nearest neighbor,” International Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 3, pp. 2696–2703, Jun. 2021.

A. Halim Hasugian, R. Amanda Putri, and M. Alfan Simatupang, “Penerapan Algoritma Klasifikasi Naïve Bayes Untuk Analisis Sentimen Tentang Pemindahan Ibu Kota Negara,” Journal of Science and Social Research, vol. 7, no. 2, pp. 635–644, 2024.

A. Razaq, Triase, and A. Buyung Nasution, “Implementasi Metode Wp Dan Electre Dalam Sistem Pendukung Keputusan Rekomendasi Travel Haji Dan Umrah Di Kota Medan,” Journal of Science and Social Research, vol. VII, no. 2, pp. 645–650, 2024.

M. K. M. Nasution, “A method for constructing a dataset to reveal the industrial behaviour of big data,” in IOP Conference Series: Materials Science and Engineering, IOP Publishing Ltd, Dec. 2020. doi: 10.1088/1757-899X/1003/1/012156.

F. Koto, A. Rahimi, J. H. Lau, and T. Baldwin, “IndoLEM and IndoBERT: A Benchmark Dataset and Pre-trained Language Model for Indonesian NLP,” Nov. 2020, [Online]. Available: http://arxiv.org/abs/2011.00677

F. Koto, A. Rahimi, J. H. Lau, and T. Baldwin, “IndoLEM and IndoBERT: A Benchmark Dataset and Pre-trained Language Model for Indonesian NLP,” Proceedings ofthe 28th International Conference on Computational Linguistics, pp. 757–770, 2020.

A. Nugraha, O. Nurdiawan, and G. Dwilestari, “Penerapan Data Mining Metode K-Means Clustering Untuk Analisa Penjualan Pada Toko Yana Sport,” Jurnal Mahasiswa Teknik Informatika), vol. 6, no. 2, pp. 849–855, 2022.

K. Dwi Ningtyas, R. Kurniawan, and Armansyah, “Penerapan Natural Language Processing Pada Aplikasi Chatbot Info Layanan Kantor Menggunakan Naïve Baiyes Algorithm,” Jurnal Teknologi Sistem Informasi dan Sistem Komputer TGD, vol. 6, no. 1, pp. 266–273, 2023.

F. Surya Mawinar, P. Korespondensi, R. Dedi Gunawan, and A. T. Priandika, “Sistem Pendukung Keputusan Pemilihan Pegawai Honorer Terbaik Menggunakan Metode Visekriterijumsko Kompromisno Rangiranje,” Journal of Data Science and Information System (DIMIS), vol. 1, no. 4, pp. 182–191, 2023, doi: 10.58602/dimis.v1i4.81.

O. Oktaviarna Tensao, I. Nyoman Yudi Anggara Wijaya, and K. Queena Fredlina, “Analisa Data Mining dengan Algoritma K-Means Clustering Untuk Menentukan Strategi Promosi Mahasiswa Baru Pada STMIK Primakara,” INFORMASI (Jurnal Informatika dan Sistem Informasi), vol. 14, no. 1, 2022.

Published
2025-09-30
Abstract views: 420 times
Download PDF: 200 times
How to Cite
Siregar, E., & Putri, R. (2025). Web-Based Wind Speed Forecasting System Using Prophet. Journal of Information Systems and Informatics, 7(3), 2834-2850. https://doi.org/10.51519/journalisi.v7i3.1240
Section
Articles