Analisis Pengelompokan Data Nilai Siswa untuk Menentukan Siswa Berprestasi Menggunakan Metode Clustering K-Means
Abstract
Dalam data mining, pendekatan K-Means Clustering adalah metode yang digunakan untuk mengelompokkan data menjadi kumpulan data. Dalam sistem analisis, pendekatan data mining berdasarkan algoritma K-Means dapat digunakan untuk pengelompokan prestasi murid. Dalam penelitian ini data nilai siswa kelas X-XII Bahasa SMAN 1 Tengaran tahun 2014-2017, dari semester satu sampai lima dikelompokkan berdasar nilai rapor. Clustering digunakan dalam pembangunan program analitik ini untuk menilai dampak data murid terhadap kecenderungan keberhasilan murid di setiap kelompok yang dapat dibuktikan dengan kelulusan murid yang menduduki top rank serta dari hasil wawancara guru pengajar maupun wali kelas serta data nilai yang diperoleh dari Dapodik. Hasil dari penelitian ini membuktikan bahwa teknik clustering K-Means dapat dimanfaatkan oleh pengajar untuk mengkategorikan murid berdasarkan nilai mata pelajaran dan absensi, serta menggunakannya untuk menganalisis prestasi murid dengan mengelompokkan dari kategori prestasi rendah, rata-rata, dan tinggi. Selanjutnya, dengan metode Simple Additive Weighting (SAW) dicari top rank dari cluster tinggi untuk menemukan murid unggulan.
Downloads
Abstract views: 8345 times
Download PDF: 13777 times
- I certify that I have read, understand and agreed to the Journal of Information Systems and Informatics (Journal-ISI) submission guidelines, policies and submission declaration. Submission already using the provided template.
- I certify that all authors have approved the publication of this and there is no conflict of interest.
- I confirm that the manuscript is the authors' original work and the manuscript has not received prior publication and is not under consideration for publication elsewhere and has not been previously published.
- I confirm that all authors listed on the title page have contributed significantly to the work, have read the manuscript, attest to the validity and legitimacy of the data and its interpretation, and agree to its submission.
- I confirm that the paper now submitted is not copied or plagiarized version of some other published work.
- I declare that I shall not submit the paper for publication in any other Journal or Magazine till the decision is made by journal editors.
- If the paper is finally accepted by the journal for publication, I confirm that I will either publish the paper immediately or withdraw it according to withdrawal policies
- I Agree that the paper published by this journal, I transfer copyright or assign exclusive rights to the publisher (including commercial rights)














