Rice Yield Forecasting: A Comparative Analysis of Multiple Machine Learning Algorithms

  • Eli Adama Jiya Federal University Dutsinma, Nigeria
  • Umar Illiyasu Federal University Dustinma, Nigeria
  • Mudashiru Akinyemi Federal University Dustinma, Nigeria
Keywords: Machine Learning, Rice Yield prediction, crop yield prediction×, Rice yield in Nigeria

Abstract

Agriculture plays a crucial role in Nigeria's economy, serving as a vital source of sustenance and livelihood for numerous Nigerians. With the escalating impact of climate change on crop yields, it becomes imperative to develop models that can effectively study and predict rice output under varying climatic conditions. This study collected rice yield data from Katsina state, spanning the years 1970 to 2017, sourced from the Nigeria Bureau of Statistics. Additionally, climatic data for the same period were obtained from the World Bank Climate Knowledge portal. Logistic Regression (LR), Artificial Neural Network (ANN), Random Forest (RF), Random Trees (RT), and Naïve Bayes (NB) were employed to develop rice yield prediction models utilizing this dataset. The findings reveal that random forest and random trees exhibited superior classification performance for yield prediction. The developed models offer a promising tool for predicting future rice yields, facilitating proactive measures to ensure food security for the people of the state.

Downloads

Download data is not yet available.

References

L. S. Cedric, W.Y.H. Adoni, R. Aworka, J.T. Zoueu, F.K. Mutombo, M. Krichen, and C.L.M. Kimpolo, “Crops yield prediction based on machine learning models: Case of West African countries,” Smart Agric. Technol., vol. 2, no. December, p. 100049, 2022, doi: 10.1016/j.atech.2022.100049.

N. Ebele and N. Emodi, “Climate Change and Its Impact in Nigerian Economy,” J. Sci. Res. Reports, vol. 10, no. 6, pp. 1–13, 2016, doi: 10.9734/jsrr/2016/25162.

National Bureau of Statistics (NBS), Annual Abstract of Statistics. Lagos, Nigeria: National Bureau of Statistics, 2010.

P. G. Oguntunde, G. Lischeid, and O. Dietrich, “Relationship between rice yield and climate variables in southwest Nigeria using multiple linear regression and support vector machine analysis,” Int. J. Biometeorol., vol. 62, no. 3, pp. 459–469, 2018, doi: 10.1007/s00484-017-1454-6.

S. A. Tiamiyu, J. N. Eze, T. M. Yusuf, A. T. Maji, and S. O. Bakare, “Rainfall Variability and its Effect on Yield of Rice in Nigeria,” Int. Lett. Nat. Sci., vol. 49, no. November, pp. 63–68, 2015, doi: 10.18052/www.scipress.com/ilns.49.63.

A. Oluwaseyi, D. Nehemmiah, and S. Zuluqurineen, “Genetic Improvement of Rice in Nigeria for Enhanced Yeild and Grain Quality - A Review,” Asian Res. J. Agric., vol. 1, no. 3, pp. 1–18, 2016, doi: 10.9734/arja/2016/28675.

H. O. Edeh and E. C. Eboh, “Analysis of Environmental Risk Factors Affecting Rice Farming in Ebonyi State , Southeastern Nigeria,” vol. 7, no. 1, pp. 100–103, 2011.

C. O. Akinbile, O. O. Ogunmola, A. T. Abolude, and S. O. Akande, “Trends and spatial analysis of temperature and rainfall patterns on rice yields in Nigeria,” Atmos. Sci. Lett., vol. 21, no. 3, pp. 1–13, 2020, doi: 10.1002/asl.944.

E. A. Jiya, U. Iliyasu, and D. U. Ebem, “Agricultural Research and Food Security under Climate Change : The Place of Machine Learning Models,” J. Adv. Math. Comput. Sci., vol. 11, no. 1, pp. 11–20, 2023, doi: dx.doi.org/10.22624/AIMS/MATHS/V11N1P2.

T. Ebenezer, “Drought , desertification and the Nigerian environment : A review,” J. Ecol. Nat. Environ. Rev., vol. 7, no. 7, pp. 197–209, 2015, doi: 10.5897/JENE2015.

C. O. Egbunu, M. T. Ogedengbe, T. S. Yange, and T. Gbaden, “Towards Food Security : the Prediction of Climatic Factors in Nigeria using Random Forest Approach,” vol. 7, no. December, pp. 70–80, 2021, doi: 10.35134/jcsitech.v7i4.15.

E. I. Papageorgiou, A. T. Markinos, and T. A. Gemtos, “Fuzzy cognitive map based approach for predicting yield in cotton crop production as a basis for decision support system in precision agriculture application,” Appl. Soft Comput. J., vol. 11, no. 4, pp. 3643–3657, 2011, doi: 10.1016/j.asoc.2011.01.036.

J. J. L. Westerveld, M. J. C. van den Homberg, G. G. Nobre, D. L. J. van den Berg, A. D. Teklesadik, and S. M. Stuit, “Forecasting transitions in the state of food security with machine learning using transferable features,” Sci. Total Environ., vol. 786, no. May, pp. 147366, 2021, doi: 10.1016/j.scitotenv.2021.147366.

S.H. Qader, C.E. Utazi, R. Priyatikanto, P. Najmaddin, E.O. Hama-Ali, N.R. Khwarahm, A.J. Tatem, and J. Dash, “Exploring the use of Sentinel-2 datasets and environmental variables to model wheat crop yield in smallholder arid and semi-arid farming systems,” Sci. Total Environ., vol. 869, pp. 161716, 2023, doi: 10.1016/j.scitotenv.2023.161716.

E. I. Papageorgiou, K. D. Aggelopoulou, T. A. Gemtos, and G. D. Nanos, “Yield prediction in apples using Fuzzy Cognitive Map learning approach,” Comput. Electron. Agric., vol. 91, pp. 19–29, 2013, doi: 10.1016/j.compag.2012.11.008.

V. Mamatha and J. C. Kavitha, “Machine learning based crop growth management in greenhouse environment using hydroponics farming techniques,” Meas. Sensors, vol. 25, no. December 2022, pp. 100665, 2023, doi: 10.1016/j.measen.2023.100665.

J. Manrique-Silupu, J. C. Campos, E. Paiva, and W. Ipanaqué, “Thrips incidence prediction in organic banana crop with Machine learning,” Heliyon, vol. 7, no. 12, p. e08575, 2021, doi: 10.1016/j.heliyon.2021.e08575.

A. Tripathi, R. K. Tiwari, and S. P. Tiwari, “A deep learning multi-layer perceptron and remote sensing approach for soil health based crop yield estimation,” Int. J. Appl. Earth Obs. Geoinf., vol. 113, no. August, p. 102959, 2022, doi: 10.1016/j.jag.2022.102959.

J. Zhi, X. Cao, Z. Zhang, T. Qin, L. Qi, L. Ge,A. Guo, X. Wang, C. Da, Y. Sun, and W. Liu, “Identifying the determinants of crop yields in China since 1952 and its policy implications,” Agric. For. Meteorol., vol. 327, no. September, 2022, doi: 10.1016/j.agrformet.2022.109216.

G. Martini et al., “Machine learning can guide food security efforts when primary data are not available,” Nat. Food, vol. 3, no. 9, pp. 716–728, 2022, doi: 10.1038/s43016-022-00587-8.

E. Wollenberg, S. J. Vermeulen, E. Girvetz, A. M. Loboguerrero, and J. Ramirez-Villegas, “Reducing risks to food security from climate change,” Glob. Food Sec., vol. 11, pp. 34–43, 2016, doi: 10.1016/j.gfs.2016.06.002.

J. Schmitt, F. Offermann, M. Söder, C. Frühauf, and R. Finger, “Extreme weather events cause significant crop yield losses at the farm level in German agriculture,” Food Policy, vol. 112, no. August, 2022, doi: 10.1016/j.foodpol.2022.102359.

M. Singh Boori, K. Choudhary, R. Paringer, and A. Kupriyanov, “Machine learning for yield prediction in Fergana valley, Central Asia,” J. Saudi Soc. Agric. Sci., no. xxxx, 2022, doi: 10.1016/j.jssas.2022.07.006.

P. A. J. van Oort, B. G. H. Timmermans, R. L. M. Schils, and N. van Eekeren, “Recent weather extremes and their impact on crop yields of the Netherlands,” Eur. J. Agron., vol. 142, no. October 2022, p. 126662, 2023, doi: 10.1016/j.eja.2022.126662.

R. Aworka et al., “Agricultural decision system based on advanced machine learning models for yield prediction: Case of East African countries,” Smart Agric. Technol., vol. 2, no. December 2021, p. 100048, 2022, doi: 10.1016/j.atech.2022.100048.

G. Shao, W. Han, H. Zhang, L. Zhang, Y. Wang, and Y. Zhang, “Prediction of maize crop coefficient from UAV multisensor remote sensing using machine learning methods,” Agric. Water Manag., vol. 276, no. November 2022, p. 108064, 2023, doi: 10.1016/j.agwat.2022.108064.

E. I. Papageorgiou, A. T. Markinos, and T. A. Gemtos, “Soft computing technique of fuzzy cognitive maps to connect yield defining parameters with yield in cotton crop production in central Greece as a basis for a decision support system for precision agriculture application,” Stud. Fuzziness Soft Comput., vol. 247, pp. 325–362, 2010, doi: 10.1007/978-3-642-03220-2_14.

A. M. Shuaibu, M. N. Muhammad, and Y. Abu-safyan, “Forecasting Rice Production in Jigawa State , Nigeria using Fuzzy Inference System,” Dutse J. Pure Appl. Sci., vol. 7, no. 4, pp. 203–213, 2021.

L. Wickramasinghe, R. Weliwatta, P. Ekanayake, and J. Jayasinghe, “Modeling the Relationship between Rice Yield and Climate Variables Using Statistical and Machine Learning Techniques,” J. Math., vol. 2021, 2021, doi: 10.1155/2021/6646126.

D. Chakraborty et al., “Usability of the Weather Forecast for Tackling Climatic Variability and Its Effect on Maize Crop Yield in Northeastern Hill Region of India,” Agronomy, vol. 12, pp. 18-, 2022.

S. Ramesh, A. Hebbar, V. Yadav, T. Gunta, and A. Balachandra, “CYPUR-NN: Crop Yield Prediction Using Regression and Neural Networks,” in Emerging Research in Computing, Information, Communication and Applications, ERCICA 2020., Singapore.: Springer, 2022, pp. 193–206.

D. Paudel et al., “Machine Learning for large-scale crop yield forecasting,” Agric. Syst., vol. 187, 2921, doi: 10.1016/j.agsy.2020.103016.

A. Prasad, N., Patel, N. R. and Danodia, “Crop yield prediction in cotton for regional level using random forest approach,” Spat. Inf. Res, vol. 29, no. 2, pp. 195–206, 2021, doi: doi: 10.1007/s41324-020-00346-6.

S. Agarwal and S. Tarar, “A hybrid approach for crop yield prediction using machine learning and deep learning algorithms,” J. Phys. Conf. Ser., vol. 1714, no. 1, 2021, doi: doi: 10.1088/1742-6596/1714/1/012012.

C. Rugimbana, “Predicting Maize (Zea Mays) Yields in Eastern Province of Rwanda Using Aquacrop Model,” University of Nairob, 2019.

L. Khaki, S. and Wang, “Crop yield prediction using deep neural networks,” Front. Plant Sci., vol. 10, 2019, doi: doi: 10.3389/fpls.2019.00621

S. A. Alanazi et al., “Boosting Breast Cancer Detection Using Convolutional Neural Network,” J. Healthc. Eng., vol. 2, 2021.

L. He, H. Li, S. K. Holland, W. Yuan, M. Altaye, and N. A. Parikh, “NeuroImage : Clinical Early prediction of cognitive de fi cits in very preterm infants using functional connectome data in an arti fi cial neural network framework,” NeuroImage Clin., vol. 18, no. October 2017, pp. 290–297, 2018, doi: 10.1016/j.nicl.2018.01.032.

E. Okewu, S. Misra, L. F. Sanz, F. Ayeni, V. Mbarika, and R. Damaševičius, “Deep Neural Networks for Curbing Climate Change-Induced Farmers-Herdsmen Clashes in a Sustainable Social Inclusion Initiative,” Probl. Sustain. Dev., vol. 14, no. 2, pp. 143–155, 2019.

F. Guo et al., “What drives forest fire in Fujian, China? Evidence from logistic regression and Random Forests,” Int. J. Wildl. Fire, vol. 25, no. 5, pp. 505–519, 2016, doi: 10.1071/WF15121.

S. Gupta, S. K. Abraham, V. Sugumaran, and M. Amarnath, “Fault Diagnostics of a Gearbox via Acoustic Signal using Wavelet Features, J48 Decision Tree and Random Tree Classifier,” Indian J. Sci. Technol., vol. 9, no. 33, pp. 1–8, 2016, doi: 10.17485/ijst/2016/v9i33/101328.

N. Salmi and Z. Rustam, “Naïve Bayes Classifier Models for Predicting the Colon Cancer,” IOP Conf. Ser. Mater. Sci. Eng., vol. 546, 2019, doi: 10.1088/1757-899X/546/5/052068.

Published
2023-06-01
Abstract views: 3274 times
Download PDF: 2464 times
How to Cite
Jiya, E., Illiyasu, U., & Akinyemi, M. (2023). Rice Yield Forecasting: A Comparative Analysis of Multiple Machine Learning Algorithms. Journal of Information Systems and Informatics, 5(2), 785-799. https://doi.org/10.51519/journalisi.v5i2.506