Analisis Text Clustering Masyarakat Di Twitter Mengenai Omnibus Law Menggunakan Orange Data Mining
Abstract
Sosial media dengan platform twitter menjadi hal menarik untuk diteliti. Trending topik tersebut menghasilkan komentar masyarakat Indonesia yang mengandung opini berupa emosi. Penelitian ini mencoba menganalisis opini di twitter dengan metode analisis vader yang menghasilkan tweet profiler kemudian visualisasi distribution. Penelitian ini menggunakan tools orange data mining dengan mengaplikasikan Prepocess text yang meliputi transformation, tokenization, normalization, dan filtering yang bertujuan agar text bisa dianalisis. Kesimpulan dari penelitian ini yaitu respon masyarakat terhadap UU Cipta Kerja Omnibus Law mendapat 6 respon dan yang paling tertinggi responnya adalah masyarakat merasa surprise.
Downloads
References
“orange biolab.” [Online]. https://orange.biolab.si/workflows/.
N. Anggraini and H. Suroyo, “Comparison of Sentiment Analysis against Digital Payment ‘T-cash and Go-pay’ in Social Media Using Orange Data Mining,” J. Inf. Syst. Informatics, vol. 1, no. 2, pp. 152–163, 2019.
antara, “Indonesia Peringkat Lima Pengguna Twitter,” kominfo, 2012. .
N. and J. D. Colnerič, “Emotion Recognition on Twitter: Comparative Study and Training a Unison Model,” In IEEE Transactions on Affective Computing., 2018. .
Dandy Bayu Bramasta, “Secepat Kilat, Berikut Fakta soal Omnibus Law UU Cipta Kerja,” kompas, jakarta, p. 1, Oct-2020.
H. Harahap and A. Hamid, “Analysis of The Importance of Omnibus Law “Cipta Karya" in Indonesia,” Int. J. Sci. Res. Manag., vol. 8, no. 08, pp. 236–250, 2020.
M. Hidayat, “Jegal Omnibus Law Trending Twitter, Simak 4 Pasal Kontroversi RUU Cipta Kerja,” tempo.co, jakarta, p. 1, Aug-2020.
S. Juanita, “Analisis Sentimen Persepsi Masyarakat Terhadap Pemilu 2019 Pada Media Sosial Twitter Menggunakan Naive Bayes,” J. Media Inform. Budidarma, vol. 4, no. 3, p. 552, 2020.
S. Kodati and R. Vivekanandam, “Analysis of Heart Disease using in Data Mining Tools Orange and Weka Sri Satya Sai University Analysis of Heart Disease using in Data Mining Tools Orange and Weka,” Glob. J. Comput. Sci. Technol., vol. 18, no. 1, 2018.
A. Patunru, A. Surianta, and A. Tenggara, “Menarik Penanaman Modal Asing ( PMA ),” no. 4, pp. 1–9, 2020.
A. Sentiya, H. Suroyo, F. I. Komputer, and U. B. Darma, “Analisis Text Clustering Akun Fanpage Shopee Indonesia Dengan Komentar Followers Menggunakan Tools Orange Data Mining,” Bina Darma Conf. Comput. Sci., pp. 1055–1067.
Abstract views: 6401 times
Download PDF: 6789 times
- I certify that I have read, understand and agreed to the Journal of Information Systems and Informatics (Journal-ISI) submission guidelines, policies and submission declaration. Submission already using the provided template.
- I certify that all authors have approved the publication of this and there is no conflict of interest.
- I confirm that the manuscript is the authors' original work and the manuscript has not received prior publication and is not under consideration for publication elsewhere and has not been previously published.
- I confirm that all authors listed on the title page have contributed significantly to the work, have read the manuscript, attest to the validity and legitimacy of the data and its interpretation, and agree to its submission.
- I confirm that the paper now submitted is not copied or plagiarized version of some other published work.
- I declare that I shall not submit the paper for publication in any other Journal or Magazine till the decision is made by journal editors.
- If the paper is finally accepted by the journal for publication, I confirm that I will either publish the paper immediately or withdraw it according to withdrawal policies
- I Agree that the paper published by this journal, I transfer copyright or assign exclusive rights to the publisher (including commercial rights)














