Sentiment Analysis of Indonesian Netizens toward Vasectomy on X Using the IndoBERT Model

Authors

  • Yelli Nur Alinda Indonesia
  • Allsela Meiriza Indonesia
  • Dinna Yunika Hardiyanti Indonesia
Pages Icon

DOI:

https://doi.org/10.63158/journalisi.v8i1.1425

Keywords:

Sentiment Analysis, IndoBERT, Semi-supervised Learning, Social Media Analysis, Vasectomy

Abstract

Vasectomy-related conversations on X (Twitter) frequently generate polarized pro–contra debates that can shape public understanding of male contraception, yet evidence on Indonesian netizens’ sentiment remains limited. This study maps and classifies sentiment toward vasectomy during April–June 2025 using a descriptive quantitative text-mining and NLP pipeline. After preprocessing (cleaning and deduplication), 9,817 posts were analyzed. Semi-supervised labeling was performed using the teacher model taufiqdp/indonesian-sentiment with confidence-based refinement, supported by a rule-based sarcasm_flag that identified 330 potentially sarcastic texts. A 20% manually verified GOLD subset (1,963 samples) served as ground truth, and IndoBERT (indolem/indobert-base-uncased) was fine-tuned with weighted cross-entropy and early stopping. Evaluation on the GOLD test set (n = 393) showed strong performance (accuracy = 0.8168; macro F1 = 0.8141), with most errors concentrated in short, ambiguous, or humor/sarcasm-leaning posts. Full-corpus predictions produced 3,957 negative, 3,520 positive, and 2,340 neutral texts, indicating a contested and polarized discourse with a slightly higher negative share. These findings support the need for evidence-based digital communication strategies to address misconceptions and stigma surrounding male contraception.

Downloads

Download data is not yet available.

References

[1] P. Sari, C. A. Febriani, and A. Farich, “Determinant Factors of Men’s Participation as Family Planning Acceptors in Indonesia (2017 IDHS Data Analysis),” J. Kesehat. Komunitas, vol. 9, no. 1, pp. 138–148, 2023, doi: 10.25311/keskom.Vol9.Iss1.1306.

[2] N. M. Amanati, S. B. Musthofa, and A. Kusumawati, “Analysis of Factors Associated with Vasectomy Use in Karanganyar Village, Ngawi Regency, East Java (Analisis Faktor yang Berhubungan dengan Penggunaan Vasektomi di Desa Karanganyar Kabupaten Ngawi Jawa Timur),” MKMI Media Kesehat. Masy., vol. 20, no. 2, pp. 91–98, 2021, doi: 10.14710/mkmi.20.2.91-98.

[3] F. Yang et al., “Review of Vasectomy Complications and Safety Concerns,” World J Men’s Heal., vol. 39, no. 3, pp. 406–418, 2021, doi: 10.5534/wjmh.200073.

[4] E. S. Pallangyo, A. C. Msoka, S. Brownie, and E. Holroyd, “Religious beliefs, social pressure, and stigma: Rural women’s perceptions and beliefs about vasectomy in Pwani, Tanzania,” PLoS One, vol. 15, no. 3, 2020, doi: 10.1371/journal.pone.0230045.

[5] A. Fahrudin, N. Lisnarini, and G. Kurnia Dewi, “Policy Populism of West Java Governor Dedi Mulyadi (A Sentiment Analysis Study) (Populisme Kebijakan Gubernur Jawa Barat Dedi Mulyadi (Studi Analisis Sentimen)),” MASSIVE J. Ilmu Komun., vol. 5, no. 1, pp. 17–31, 2025, doi: 10.35842/massive.v5i1.175.

[6] E. A. Winanto, Z. Ali, P. A. Jusia, and Sharipuddin, “Sentiment Analysis of the Hashtag #KaburAjaDulu on Twitter Using a Lexicon-Based Method (Analisis Sentimen Terhadap Tagar Kabur Aja Dulu Di Twitter Menggunakan Metode Lexicon-Based),” J. Process., vol. 20, no. 2, pp. 223–233, 2025, doi: 10.33998/processor.2025.20.2.2542.

[7] N. Putu Gita Naraswati, D. Cindy Rosmilda, D. Desinta, F. Khairi, R. Damaiyanti, and R. Nooraeni, “Twitter Public Sentiment Analysis Regarding Indonesia’s COVID-19 Response Policy Using Naive Bayes Classification (Analisis Sentimen Publik dari Twitter Tentang Kebijakan Penanganan Covid-19 di Indonesia dengan Naive Bayes Classification),” J. Sist. Inf., vol. 10, no. 1, pp. 228–238, 2021, doi: 10.32520/stmsi.v10i1.1179.

[8] M. F. Naufal and S. F. Kusuma, “Sentiment Analysis on Twitter Toward the Community Activity Restrictions Enforcement Policy (PPKM) Using Deep Learning (Analisis Sentimen pada Media Sosial Twitter Terhadap Kebijakan Pemberlakuan Pembatasan Kegiatan Masyarakat Berbasis Deep Learning),” JEPIN (Jurnal Edukasi dan Penelit. Inform.), vol. 8, no. 1, pp. 44–49, 2022, doi: 10.26418/jp.v8i1.49951.

[9] J. S. Febrilliani and A. Wibowo, “Twitter Public Sentiment towards Vasectomy in Indonesia Using SVM and Naïve Bayes,” Res. Horiz., vol. 5, no. 4, pp. 1415–1424, 2025, doi: 10.54518/rh.5.4.2025.756.

[10] N. P. Sari, A. Munir, M. R. At, and M. Iskandar, “Twitter Sentiment Analysis of Long-Acting Reversible Contraceptives (LARC) Methods in Indonesia with Machine Learning Approach,” in Proceedings of the International Conference on Multidisciplinary Studies (ICoMSi 2023), Atlantis Press SARL, 2024, pp. 167–185. doi: 10.2991/978-2-38476-228-6_15.

[11] M. P. Firdaus and D. Trisnawarman, “Public Sentiment Analysis of the Public Housing Savings Program Using the IndoBERT Lite Model on YouTube Comments,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 5, no. 1, pp. 359–368, 2025, doi: 10.57152/malcom.v5i1.1744.

[12] V. D. Setiawan, D. U. Iswavigra, and E. Anggiratih, “Implementation of IndoBERT for Sentiment Analysis of the Constitutional Court’s Decision Regarding the Minimum Age of Vice Presidential Candidates,” Sci. J. Informatics, vol. 12, no. 3, pp. 397–406, 2025, doi: 10.15294/sji.v12i3.26360.

[13] A. Roihan, T. T. Atmojo, R. A. Wardoyo, and M. S. T. Saputra, “Sentiment Analysis of Twitter Data on the 2024 Indonesian Presidential Election Using BERT,” CCIT J., vol. 18, no. 1, pp. 39–45, 2024, doi: 10.33050/ccit.v18i1.3210.

[14] S. Khairunnisa, Adiwijaya, and S. Al Faraby, “The Effect of Text Preprocessing on Sentiment Analysis of Public Comments on Twitter (COVID-19 Pandemic Case Study) (Pengaruh Text Preprocessing terhadap Analisis Sentimen Komentar Masyarakat pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19)),” J. Media Inform. Budidarma, vol. 5, no. 2, pp. 406–414, 2021, doi: 10.30865/mib.v5i2.2835.

[15] N. F. Adhim and N. Cahyono, “Optimization of IndoBERT for Sentiment Analysis of FOMO on Social Media Through Fine-Tuning and Hybrid Labeling,” JAIC J. Appl. Informatics Comput., vol. 9, no. 6, pp. 3786–3797, 2025, doi: 10.30871/jaic.v9i6.11686.

[16] P. Slater and F. Hasson, “Quantitative Research Designs, Hierarchy of Evidence and Validity,” J. Psychiatr. Ment. Health Nurs., vol. 32, no. 3, pp. 656–660, 2024, doi: 10.1111/jpm.13135.

[17] H. D. Pradana, R. Rusijono, I. Y. Maureen, and E. Youhanita, “Artificial Intelligence in Learning Design: Acceptance, Perceived Effectiveness, and Barriers,” J. Penelit. dan Pengkaj. Ilmu Pendidik. e-Saintika, vol. 9, no. 2, pp. 489–511, 2025, doi: 10.36312/e-saintika.v9i2.2688.

[18] D. Z. Abidin, L. Afuan, A. N. Toscany, and Nurhadi, “A Comprehensive Benchmarking Pipeline for Transformer-Based Sentiment Analysis using Cross-Validated Metrics,” J. Tek. Inform., vol. 6, no. 4, pp. 1797–1810, 2025, doi: 10.52436/1.jutif.2025.6.4.4894.

[19] J. A. Borrell, C. Gu, N. Ye, J. N. Mills, and J. J. Andino, “Comparing vasectomy techniques, recovery and complications: tips and tricks,” Int. J. Impot. Res., pp. 1–7, 2025, doi: 10.1038/s41443-025-01018-5.

[20] Y. N. D. W. D. Sehnur, “The Phenomenon of Masculine Panic Behind Male Contraception Programs (Fenomena Kepanikan Maskulin Dibalik Program Kontrasepsi Laki-Laki),” LENTERA J. Gend. Child. Stud., vol. 4, no. 2, pp. 297–311, 2024, doi: 10.26740/lentera.v4i2.33455.

[21] A. Bechini, A. Bondielli, P. Ducange, F. Marcelloni, and A. Renda, “Addressing Event-Driven Concept Drift in Twitter Stream: A Stance Detection Application,” IEEE Access, vol. 9, pp. 77758–77770, 2021, doi: 10.1109/ACCESS.2021.3083578.

[22] A. S. Rizkia, Wufron, and F. F. Roji, “Coretax Sentiment Analysis: Comparing Manual, Transformer-Based, and Lexicon-Based Data Labeling on IndoBERT Performance (Analisis Sentimen Coretax: Perbandingan Pelabelan Data Manual, Transformers-Based, dan Lexicon-Based pada Performa IndoBERT),” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 5, no. 3, pp. 1037–1048, 2025, doi: 10.57152/malcom.v5i3.2151.

[23] P. Ayuningtyas, S. Khomsah, and Sudianto, “Semi-Supervised Learning–Based Sentiment Labeling Using LSTM and GRU Algorithms (Pelabelan Sentimen Berbasis Semi-Supervised Learning menggunakan Algoritma LSTM dan GRU),” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 9, no. 3, pp. 217–229, 2024, doi: 10.14421/jiska.2024.9.3.217-229.

[24] Y. Yu, S. Zuo, H. Jiang, W. Ren, T. Zhao, and C. Zhang, “Fine-Tuning Pre-trained Language Model with Weak Supervision: A Contrastive-Regularized Self-Training Approach,” in Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2021, pp. 1063–1077. doi: 10.18653/v1/2021.naacl-main.84.

[25] A. A. Qolbu, N. Fitriyati, and N. Inayah, “Performance of Naive Bayes, SVM, and IndoBERT for IndiHome Twitter Sentiment Analysis with Imbalanced-Data Handling Strategies (Performa Naïve Bayes, SVM, dan IndoBERT pada Analisis Sentimen Twitter IndiHome dengan Strategi Penanganan Data Tidak Seimbang),” J. FOURIER, vol. 814, no. 1, pp. 29–44, 2025, doi: 10.14421/fourier.2025.141.29-44.

[26] M. R. Manoppo et al., “Public Sentiment Analysis on Social Media Regarding Indonesia’s 12% VAT Increase Using IndoBERT (Analisis Sentimen Publik Di Media Sosial Terhadap Kenaikan Ppn 12% Di Indonesia Menggunakan Indobert),” J. Kecerdasan Buatan dan Teknol. Inf., vol. 4, no. 2, pp. 152–163, 2025, doi: 10.69916/jkbti.v4i2.322.

[27] W. A. Hidayat and V. R. S. Nastiti, “Performance Comparison of Pre-Trained IndoBERT-Base and IndoBERT-Lite for Sentiment Classification of TikTok Reviews of Tokopedia Seller Center Using IndoBERT (Perbandingan Kinerja Pre-Trained Indobert-Base Dan Indobert-Lite Pada Klasifikasi Sentimen Ulasan Tiktok Tokopedia Seller Center Dengan Model Indobert),” JSiI (Jurnal Sist. Informasi), vol. 11, no. 2, pp. 13–20, 2024, doi: 10.30656/jsii.v11i2.9168.

[28] D. K. Sumartha, “Implementation of IndoBERT for Sentiment Analysis of Public Opinion on the UKT Tuition-Fee Increase Policy in the Current Government Era (Implementasi Indobert Untuk Analisis Sentimen Opini Publik Terhadap Kebijakan Kenaikan UKT Di Era Pemerintahan),” J. Inform. dan Tek. Elektro Terap., vol. 13, no. 3S1, pp. 867–875, 2025, doi: 10.23960/jitet.v13i3S1.7880.

[29] R. I. Perwira, V. A. Permadi, D. I. Purnamasari, and R. P. Agusdin, “Domain-Specific Fine-Tuning of IndoBERT for Aspect-Based Sentiment Analysis in Indonesian Travel User-Generated Content,” J. Inf. Syst. Eng. Bus. Intell., vol. 11, no. 1, pp. 30–40, 2025, doi: 10.23960/jitet.v13i3S1.7880.

[30] A. Aljabar, B. M. Karomah, N. Tarisafitri, and J. Jeffry, “Sentiment Analysis in Indonesian’s Presidential Election 2024 Using Transfomer (Distilbert-Base-Uncased),” JSCE (Journal Syst. Comput. Eng.), vol. 6, no. 2, pp. 197–203, 2025, doi: 10.61628/jsce.v6i2.1867.

[31] A. S. Muliana, D. Lestarini, and S. P. Raflesia, “Analysis of Public Sentiment on Election Results using Naïve Bayes in Social Media X,” Sistemasi, vol. 13, no. 6, pp. 2467–2478, 2024, doi: 10.32520/stmsi.v13i6.4592.

Downloads

Published

2026-02-13

Issue

Section

Articles

How to Cite

[1]
Y. N. Alinda, A. Meiriza, and D. Y. Hardiyanti, “Sentiment Analysis of Indonesian Netizens toward Vasectomy on X Using the IndoBERT Model”, journalisi, vol. 8, no. 1, pp. 194–222, Feb. 2026, doi: 10.63158/journalisi.v8i1.1425.

Most read articles by the same author(s)